use digest::Digest; #[cfg(target_os = "none")] use embassy_embedded_hal::flash::partition::Partition; #[cfg(target_os = "none")] use embassy_sync::blocking_mutex::raw::NoopRawMutex; use embedded_storage_async::nor_flash::NorFlash; use super::FirmwareUpdaterConfig; use crate::{FirmwareUpdaterError, State, BOOT_MAGIC, STATE_ERASE_VALUE, SWAP_MAGIC}; /// FirmwareUpdater is an application API for interacting with the BootLoader without the ability to /// 'mess up' the internal bootloader state pub struct FirmwareUpdater<'d, DFU: NorFlash, STATE: NorFlash> { dfu: DFU, state: FirmwareState<'d, STATE>, } #[cfg(target_os = "none")] impl<'a, FLASH: NorFlash> FirmwareUpdaterConfig, Partition<'a, NoopRawMutex, FLASH>> { /// Create a firmware updater config from the flash and address symbols defined in the linkerfile pub fn from_linkerfile(flash: &'a embassy_sync::mutex::Mutex) -> Self { extern "C" { static __bootloader_state_start: u32; static __bootloader_state_end: u32; static __bootloader_dfu_start: u32; static __bootloader_dfu_end: u32; } let dfu = unsafe { let start = &__bootloader_dfu_start as *const u32 as u32; let end = &__bootloader_dfu_end as *const u32 as u32; trace!("DFU: 0x{:x} - 0x{:x}", start, end); Partition::new(flash, start, end - start) }; let state = unsafe { let start = &__bootloader_state_start as *const u32 as u32; let end = &__bootloader_state_end as *const u32 as u32; trace!("STATE: 0x{:x} - 0x{:x}", start, end); Partition::new(flash, start, end - start) }; Self { dfu, state } } } impl<'d, DFU: NorFlash, STATE: NorFlash> FirmwareUpdater<'d, DFU, STATE> { /// Create a firmware updater instance with partition ranges for the update and state partitions. pub fn new(config: FirmwareUpdaterConfig, aligned: &'d mut [u8]) -> Self { Self { dfu: config.dfu, state: FirmwareState::new(config.state, aligned), } } /// Obtain the current state. /// /// This is useful to check if the bootloader has just done a swap, in order /// to do verifications and self-tests of the new image before calling /// `mark_booted`. pub async fn get_state(&mut self) -> Result { self.state.get_state().await } /// Verify the DFU given a public key. If there is an error then DO NOT /// proceed with updating the firmware as it must be signed with a /// corresponding private key (otherwise it could be malicious firmware). /// /// Mark to trigger firmware swap on next boot if verify suceeds. /// /// If the "ed25519-salty" feature is set (or another similar feature) then the signature is expected to have /// been generated from a SHA-512 digest of the firmware bytes. /// /// If no signature feature is set then this method will always return a /// signature error. #[cfg(feature = "_verify")] pub async fn verify_and_mark_updated( &mut self, _public_key: &[u8], _signature: &[u8], _update_len: u32, ) -> Result<(), FirmwareUpdaterError> { assert!(_update_len <= self.dfu.capacity() as u32); self.state.verify_booted().await?; #[cfg(feature = "ed25519-dalek")] { use ed25519_dalek::{PublicKey, Signature, SignatureError, Verifier}; use crate::digest_adapters::ed25519_dalek::Sha512; let into_signature_error = |e: SignatureError| FirmwareUpdaterError::Signature(e.into()); let public_key = PublicKey::from_bytes(_public_key).map_err(into_signature_error)?; let signature = Signature::from_bytes(_signature).map_err(into_signature_error)?; let mut chunk_buf = [0; 2]; let mut message = [0; 64]; self.hash::(_update_len, &mut chunk_buf, &mut message).await?; public_key.verify(&message, &signature).map_err(into_signature_error)? } #[cfg(feature = "ed25519-salty")] { use salty::constants::{PUBLICKEY_SERIALIZED_LENGTH, SIGNATURE_SERIALIZED_LENGTH}; use salty::{PublicKey, Signature}; use crate::digest_adapters::salty::Sha512; fn into_signature_error(_: E) -> FirmwareUpdaterError { FirmwareUpdaterError::Signature(signature::Error::default()) } let public_key: [u8; PUBLICKEY_SERIALIZED_LENGTH] = _public_key.try_into().map_err(into_signature_error)?; let public_key = PublicKey::try_from(&public_key).map_err(into_signature_error)?; let signature: [u8; SIGNATURE_SERIALIZED_LENGTH] = _signature.try_into().map_err(into_signature_error)?; let signature = Signature::try_from(&signature).map_err(into_signature_error)?; let mut message = [0; 64]; let mut chunk_buf = [0; 2]; self.hash::(_update_len, &mut chunk_buf, &mut message).await?; let r = public_key.verify(&message, &signature); trace!( "Verifying with public key {}, signature {} and message {} yields ok: {}", public_key.to_bytes(), signature.to_bytes(), message, r.is_ok() ); r.map_err(into_signature_error)? } self.state.mark_updated().await } /// Verify the update in DFU with any digest. pub async fn hash( &mut self, update_len: u32, chunk_buf: &mut [u8], output: &mut [u8], ) -> Result<(), FirmwareUpdaterError> { let mut digest = D::new(); for offset in (0..update_len).step_by(chunk_buf.len()) { self.dfu.read(offset, chunk_buf).await?; let len = core::cmp::min((update_len - offset) as usize, chunk_buf.len()); digest.update(&chunk_buf[..len]); } output.copy_from_slice(digest.finalize().as_slice()); Ok(()) } /// Mark to trigger firmware swap on next boot. #[cfg(not(feature = "_verify"))] pub async fn mark_updated(&mut self) -> Result<(), FirmwareUpdaterError> { self.state.mark_updated().await } /// Mark firmware boot successful and stop rollback on reset. pub async fn mark_booted(&mut self) -> Result<(), FirmwareUpdaterError> { self.state.mark_booted().await } /// Write data to a flash page. /// /// The buffer must follow alignment requirements of the target flash and a multiple of page size big. /// /// # Safety /// /// Failing to meet alignment and size requirements may result in a panic. pub async fn write_firmware(&mut self, offset: usize, data: &[u8]) -> Result<(), FirmwareUpdaterError> { assert!(data.len() >= DFU::ERASE_SIZE); self.state.verify_booted().await?; self.dfu.erase(offset as u32, (offset + data.len()) as u32).await?; self.dfu.write(offset as u32, data).await?; Ok(()) } /// Prepare for an incoming DFU update by erasing the entire DFU area and /// returning its `Partition`. /// /// Using this instead of `write_firmware` allows for an optimized API in /// exchange for added complexity. pub async fn prepare_update(&mut self) -> Result<&mut DFU, FirmwareUpdaterError> { self.state.verify_booted().await?; self.dfu.erase(0, self.dfu.capacity() as u32).await?; Ok(&mut self.dfu) } } /// Manages the state partition of the firmware update. /// /// Can be used standalone for more fine grained control, or as part of the updater. pub struct FirmwareState<'d, STATE> { state: STATE, aligned: &'d mut [u8], } impl<'d, STATE: NorFlash> FirmwareState<'d, STATE> { /// Create a firmware state instance with a buffer for magic content and state partition. /// /// # Safety /// /// The `aligned` buffer must have a size of STATE::WRITE_SIZE, and follow the alignment rules for the flash being read from /// and written to. pub fn new(state: STATE, aligned: &'d mut [u8]) -> Self { assert_eq!(aligned.len(), STATE::WRITE_SIZE); Self { state, aligned } } // Make sure we are running a booted firmware to avoid reverting to a bad state. async fn verify_booted(&mut self) -> Result<(), FirmwareUpdaterError> { if self.get_state().await? == State::Boot { Ok(()) } else { Err(FirmwareUpdaterError::BadState) } } /// Obtain the current state. /// /// This is useful to check if the bootloader has just done a swap, in order /// to do verifications and self-tests of the new image before calling /// `mark_booted`. pub async fn get_state(&mut self) -> Result { self.state.read(0, &mut self.aligned).await?; if !self.aligned.iter().any(|&b| b != SWAP_MAGIC) { Ok(State::Swap) } else { Ok(State::Boot) } } /// Mark to trigger firmware swap on next boot. pub async fn mark_updated(&mut self) -> Result<(), FirmwareUpdaterError> { self.set_magic(SWAP_MAGIC).await } /// Mark firmware boot successful and stop rollback on reset. pub async fn mark_booted(&mut self) -> Result<(), FirmwareUpdaterError> { self.set_magic(BOOT_MAGIC).await } async fn set_magic(&mut self, magic: u8) -> Result<(), FirmwareUpdaterError> { self.state.read(0, &mut self.aligned).await?; if self.aligned.iter().any(|&b| b != magic) { // Read progress validity self.state.read(STATE::WRITE_SIZE as u32, &mut self.aligned).await?; if self.aligned.iter().any(|&b| b != STATE_ERASE_VALUE) { // The current progress validity marker is invalid } else { // Invalidate progress self.aligned.fill(!STATE_ERASE_VALUE); self.state.write(STATE::WRITE_SIZE as u32, &self.aligned).await?; } // Clear magic and progress self.state.erase(0, self.state.capacity() as u32).await?; // Set magic self.aligned.fill(magic); self.state.write(0, &self.aligned).await?; } Ok(()) } } #[cfg(test)] mod tests { use embassy_embedded_hal::flash::partition::Partition; use embassy_sync::blocking_mutex::raw::NoopRawMutex; use embassy_sync::mutex::Mutex; use futures::executor::block_on; use sha1::{Digest, Sha1}; use super::*; use crate::mem_flash::MemFlash; #[test] fn can_verify_sha1() { let flash = Mutex::::new(MemFlash::<131072, 4096, 8>::default()); let state = Partition::new(&flash, 0, 4096); let dfu = Partition::new(&flash, 65536, 65536); let mut aligned = [0; 8]; let update = [0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66]; let mut to_write = [0; 4096]; to_write[..7].copy_from_slice(update.as_slice()); let mut updater = FirmwareUpdater::new(FirmwareUpdaterConfig { dfu, state }, &mut aligned); block_on(updater.write_firmware(0, to_write.as_slice())).unwrap(); let mut chunk_buf = [0; 2]; let mut hash = [0; 20]; block_on(updater.hash::(update.len() as u32, &mut chunk_buf, &mut hash)).unwrap(); assert_eq!(Sha1::digest(update).as_slice(), hash); } }