#![macro_use]
use core::future::poll_fn;
use core::sync::atomic::{compiler_fence, Ordering};
use core::task::Poll;
use embassy_embedded_hal::SetConfig;
use embassy_hal_common::{into_ref, PeripheralRef};
pub use embedded_hal_02::spi::{Mode, Phase, Polarity, MODE_0, MODE_1, MODE_2, MODE_3};
use crate::chip::FORCE_COPY_BUFFER_SIZE;
use crate::gpio::sealed::Pin as _;
use crate::gpio::{self, AnyPin, Pin as GpioPin, PselBits};
use crate::interrupt::{Interrupt, InterruptExt};
use crate::util::{slice_in_ram_or, slice_ptr_parts, slice_ptr_parts_mut};
use crate::{pac, Peripheral};
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub enum Error {
TxBufferTooLong,
RxBufferTooLong,
/// EasyDMA can only read from data memory, read only buffers in flash will fail.
DMABufferNotInDataMemory,
}
/// Interface for the SPIS peripheral using EasyDMA to offload the transmission and reception workload.
///
/// For more details about EasyDMA, consult the module documentation.
pub struct Spis<'d, T: Instance> {
_p: PeripheralRef<'d, T>,
}
#[non_exhaustive]
pub struct Config {
pub mode: Mode,
pub orc: u8,
pub def: u8,
pub auto_acquire: bool,
}
impl Default for Config {
fn default() -> Self {
Self {
mode: MODE_0,
orc: 0x00,
def: 0x00,
auto_acquire: true,
}
}
}
impl<'d, T: Instance> Spis<'d, T> {
pub fn new(
spis: impl Peripheral
+ 'd,
irq: impl Peripheral
+ 'd,
cs: impl Peripheral
+ 'd,
sck: impl Peripheral
+ 'd,
miso: impl Peripheral
+ 'd,
mosi: impl Peripheral
+ 'd,
config: Config,
) -> Self {
into_ref!(cs, sck, miso, mosi);
Self::new_inner(
spis,
irq,
cs.map_into(),
sck.map_into(),
Some(miso.map_into()),
Some(mosi.map_into()),
config,
)
}
pub fn new_txonly(
spis: impl Peripheral
+ 'd,
irq: impl Peripheral
+ 'd,
cs: impl Peripheral
+ 'd,
sck: impl Peripheral
+ 'd,
mosi: impl Peripheral
+ 'd,
config: Config,
) -> Self {
into_ref!(cs, sck, mosi);
Self::new_inner(
spis,
irq,
cs.map_into(),
sck.map_into(),
None,
Some(mosi.map_into()),
config,
)
}
pub fn new_rxonly(
spis: impl Peripheral
+ 'd,
irq: impl Peripheral
+ 'd,
cs: impl Peripheral
+ 'd,
sck: impl Peripheral
+ 'd,
miso: impl Peripheral
+ 'd,
config: Config,
) -> Self {
into_ref!(cs, sck, miso);
Self::new_inner(
spis,
irq,
cs.map_into(),
sck.map_into(),
Some(miso.map_into()),
None,
config,
)
}
fn new_inner(
spis: impl Peripheral
+ 'd,
irq: impl Peripheral
+ 'd,
cs: PeripheralRef<'d, AnyPin>,
sck: PeripheralRef<'d, AnyPin>,
miso: Option>,
mosi: Option>,
config: Config,
) -> Self {
into_ref!(cs, spis, irq);
let r = T::regs();
// Configure pins.
sck.conf().write(|w| w.input().connect().drive().h0h1());
cs.conf().write(|w| w.input().connect().drive().h0h1());
if let Some(mosi) = &mosi {
mosi.conf().write(|w| w.input().connect().drive().h0h1());
}
if let Some(miso) = &miso {
miso.conf().write(|w| w.dir().output().drive().h0h1());
}
match config.mode.polarity {
Polarity::IdleHigh => {
sck.set_high();
if let Some(mosi) = &mosi {
mosi.set_high();
}
}
Polarity::IdleLow => {
sck.set_low();
if let Some(mosi) = &mosi {
mosi.set_low();
}
}
}
// Select pins.
r.psel.sck.write(|w| unsafe { w.bits(sck.psel_bits()) });
r.psel.csn.write(|w| unsafe { w.bits(cs.psel_bits()) });
r.psel.mosi.write(|w| unsafe { w.bits(mosi.psel_bits()) });
r.psel.miso.write(|w| unsafe { w.bits(miso.psel_bits()) });
// Enable SPIS instance.
r.enable.write(|w| w.enable().enabled());
// Configure mode.
let mode = config.mode;
r.config.write(|w| {
match mode {
MODE_0 => {
w.order().msb_first();
w.cpol().active_high();
w.cpha().leading();
}
MODE_1 => {
w.order().msb_first();
w.cpol().active_high();
w.cpha().trailing();
}
MODE_2 => {
w.order().msb_first();
w.cpol().active_low();
w.cpha().leading();
}
MODE_3 => {
w.order().msb_first();
w.cpol().active_low();
w.cpha().trailing();
}
}
w
});
// Set over-read character.
let orc = config.orc;
r.orc.write(|w| unsafe { w.orc().bits(orc) });
// Set default character.
let def = config.def;
r.def.write(|w| unsafe { w.def().bits(def) });
// Configure auto-acquire on 'transfer end' event.
if config.auto_acquire {
r.shorts.write(|w| w.end_acquire().bit(true));
}
// Disable all events interrupts.
r.intenclr.write(|w| unsafe { w.bits(0xFFFF_FFFF) });
irq.set_handler(Self::on_interrupt);
irq.unpend();
irq.enable();
Self { _p: spis }
}
fn on_interrupt(_: *mut ()) {
let r = T::regs();
let s = T::state();
if r.events_end.read().bits() != 0 {
s.end_waker.wake();
r.intenclr.write(|w| w.end().clear());
}
if r.events_acquired.read().bits() != 0 {
s.acquire_waker.wake();
r.intenclr.write(|w| w.acquired().clear());
}
}
fn prepare(&mut self, rx: *mut [u8], tx: *const [u8]) -> Result<(), Error> {
slice_in_ram_or(tx, Error::DMABufferNotInDataMemory)?;
// NOTE: RAM slice check for rx is not necessary, as a mutable
// slice can only be built from data located in RAM.
compiler_fence(Ordering::SeqCst);
let r = T::regs();
// Set up the DMA write.
let (ptr, len) = slice_ptr_parts(tx);
r.txd.ptr.write(|w| unsafe { w.ptr().bits(ptr as _) });
r.txd.maxcnt.write(|w| unsafe { w.maxcnt().bits(len as _) });
// Set up the DMA read.
let (ptr, len) = slice_ptr_parts_mut(rx);
r.rxd.ptr.write(|w| unsafe { w.ptr().bits(ptr as _) });
r.rxd.maxcnt.write(|w| unsafe { w.maxcnt().bits(len as _) });
// Reset and enable the end event.
r.events_end.reset();
r.intenset.write(|w| w.end().set());
// Release the semaphore.
r.tasks_release.write(|w| unsafe { w.bits(1) });
Ok(())
}
fn blocking_inner_from_ram(&mut self, rx: *mut [u8], tx: *const [u8]) -> Result<(usize, usize), Error> {
compiler_fence(Ordering::SeqCst);
let r = T::regs();
// Acquire semaphore.
if r.semstat.read().bits() != 1 {
r.events_acquired.reset();
r.tasks_acquire.write(|w| unsafe { w.bits(1) });
// Wait until CPU has acquired the semaphore.
while r.semstat.read().bits() != 1 {}
}
self.prepare(rx, tx)?;
// Wait for 'end' event.
while r.events_end.read().bits() == 0 {}
let n_rx = r.rxd.amount.read().bits() as usize;
let n_tx = r.txd.amount.read().bits() as usize;
compiler_fence(Ordering::SeqCst);
Ok((n_rx, n_tx))
}
fn blocking_inner(&mut self, rx: &mut [u8], tx: &[u8]) -> Result<(usize, usize), Error> {
match self.blocking_inner_from_ram(rx, tx) {
Ok(n) => Ok(n),
Err(Error::DMABufferNotInDataMemory) => {
trace!("Copying SPIS tx buffer into RAM for DMA");
let tx_ram_buf = &mut [0; FORCE_COPY_BUFFER_SIZE][..tx.len()];
tx_ram_buf.copy_from_slice(tx);
self.blocking_inner_from_ram(rx, tx_ram_buf)
}
Err(error) => Err(error),
}
}
async fn async_inner_from_ram(&mut self, rx: *mut [u8], tx: *const [u8]) -> Result<(usize, usize), Error> {
let r = T::regs();
let s = T::state();
// Clear status register.
r.status.write(|w| w.overflow().clear().overread().clear());
// Acquire semaphore.
if r.semstat.read().bits() != 1 {
// Reset and enable the acquire event.
r.events_acquired.reset();
r.intenset.write(|w| w.acquired().set());
// Request acquiring the SPIS semaphore.
r.tasks_acquire.write(|w| unsafe { w.bits(1) });
// Wait until CPU has acquired the semaphore.
poll_fn(|cx| {
s.acquire_waker.register(cx.waker());
if r.semstat.read().bits() == 1 {
return Poll::Ready(());
}
Poll::Pending
})
.await;
}
self.prepare(rx, tx)?;
// Wait for 'end' event.
poll_fn(|cx| {
s.end_waker.register(cx.waker());
if r.events_end.read().bits() != 0 {
return Poll::Ready(());
}
Poll::Pending
})
.await;
let n_rx = r.rxd.amount.read().bits() as usize;
let n_tx = r.txd.amount.read().bits() as usize;
compiler_fence(Ordering::SeqCst);
Ok((n_rx, n_tx))
}
async fn async_inner(&mut self, rx: &mut [u8], tx: &[u8]) -> Result<(usize, usize), Error> {
match self.async_inner_from_ram(rx, tx).await {
Ok(n) => Ok(n),
Err(Error::DMABufferNotInDataMemory) => {
trace!("Copying SPIS tx buffer into RAM for DMA");
let tx_ram_buf = &mut [0; FORCE_COPY_BUFFER_SIZE][..tx.len()];
tx_ram_buf.copy_from_slice(tx);
self.async_inner_from_ram(rx, tx_ram_buf).await
}
Err(error) => Err(error),
}
}
/// Reads data from the SPI bus without sending anything. Blocks until the buffer has been filled.
/// Returns number of bytes read.
pub fn blocking_read(&mut self, data: &mut [u8]) -> Result {
self.blocking_inner(data, &[]).map(|n| n.0)
}
/// Simultaneously sends and receives data. Blocks until the transmission is completed.
/// If necessary, the write buffer will be copied into RAM (see struct description for detail).
/// Returns number of bytes transferred `(n_rx, n_tx)`.
pub fn blocking_transfer(&mut self, read: &mut [u8], write: &[u8]) -> Result<(usize, usize), Error> {
self.blocking_inner(read, write)
}
/// Same as [`blocking_transfer`](Spis::blocking_transfer) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
/// Returns number of bytes transferred `(n_rx, n_tx)`.
pub fn blocking_transfer_from_ram(&mut self, read: &mut [u8], write: &[u8]) -> Result<(usize, usize), Error> {
self.blocking_inner(read, write)
}
/// Simultaneously sends and receives data.
/// Places the received data into the same buffer and blocks until the transmission is completed.
/// Returns number of bytes transferred.
pub fn blocking_transfer_in_place(&mut self, data: &mut [u8]) -> Result {
self.blocking_inner_from_ram(data, data).map(|n| n.0)
}
/// Sends data, discarding any received data. Blocks until the transmission is completed.
/// If necessary, the write buffer will be copied into RAM (see struct description for detail).
/// Returns number of bytes written.
pub fn blocking_write(&mut self, data: &[u8]) -> Result {
self.blocking_inner(&mut [], data).map(|n| n.1)
}
/// Same as [`blocking_write`](Spis::blocking_write) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
/// Returns number of bytes written.
pub fn blocking_write_from_ram(&mut self, data: &[u8]) -> Result {
self.blocking_inner(&mut [], data).map(|n| n.1)
}
/// Reads data from the SPI bus without sending anything.
/// Returns number of bytes read.
pub async fn read(&mut self, data: &mut [u8]) -> Result {
self.async_inner(data, &[]).await.map(|n| n.0)
}
/// Simultaneously sends and receives data.
/// If necessary, the write buffer will be copied into RAM (see struct description for detail).
/// Returns number of bytes transferred `(n_rx, n_tx)`.
pub async fn transfer(&mut self, read: &mut [u8], write: &[u8]) -> Result<(usize, usize), Error> {
self.async_inner(read, write).await
}
/// Same as [`transfer`](Spis::transfer) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
/// Returns number of bytes transferred `(n_rx, n_tx)`.
pub async fn transfer_from_ram(&mut self, read: &mut [u8], write: &[u8]) -> Result<(usize, usize), Error> {
self.async_inner_from_ram(read, write).await
}
/// Simultaneously sends and receives data. Places the received data into the same buffer.
/// Returns number of bytes transferred.
pub async fn transfer_in_place(&mut self, data: &mut [u8]) -> Result {
self.async_inner_from_ram(data, data).await.map(|n| n.0)
}
/// Sends data, discarding any received data.
/// If necessary, the write buffer will be copied into RAM (see struct description for detail).
/// Returns number of bytes written.
pub async fn write(&mut self, data: &[u8]) -> Result {
self.async_inner(&mut [], data).await.map(|n| n.1)
}
/// Same as [`write`](Spis::write) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
/// Returns number of bytes written.
pub async fn write_from_ram(&mut self, data: &[u8]) -> Result {
self.async_inner_from_ram(&mut [], data).await.map(|n| n.1)
}
/// Checks if last transaction overread.
pub fn is_overread(&mut self) -> bool {
T::regs().status.read().overread().is_present()
}
/// Checks if last transaction overflowed.
pub fn is_overflow(&mut self) -> bool {
T::regs().status.read().overflow().is_present()
}
}
impl<'d, T: Instance> Drop for Spis<'d, T> {
fn drop(&mut self) {
trace!("spis drop");
// Disable
let r = T::regs();
r.enable.write(|w| w.enable().disabled());
gpio::deconfigure_pin(r.psel.sck.read().bits());
gpio::deconfigure_pin(r.psel.csn.read().bits());
gpio::deconfigure_pin(r.psel.miso.read().bits());
gpio::deconfigure_pin(r.psel.mosi.read().bits());
trace!("spis drop: done");
}
}
pub(crate) mod sealed {
use embassy_sync::waitqueue::AtomicWaker;
use super::*;
pub struct State {
pub end_waker: AtomicWaker,
pub acquire_waker: AtomicWaker,
}
impl State {
pub const fn new() -> Self {
Self {
end_waker: AtomicWaker::new(),
acquire_waker: AtomicWaker::new(),
}
}
}
pub trait Instance {
fn regs() -> &'static pac::spis0::RegisterBlock;
fn state() -> &'static State;
}
}
pub trait Instance: Peripheral + sealed::Instance + 'static {
type Interrupt: Interrupt;
}
macro_rules! impl_spis {
($type:ident, $pac_type:ident, $irq:ident) => {
impl crate::spis::sealed::Instance for peripherals::$type {
fn regs() -> &'static pac::spis0::RegisterBlock {
unsafe { &*pac::$pac_type::ptr() }
}
fn state() -> &'static crate::spis::sealed::State {
static STATE: crate::spis::sealed::State = crate::spis::sealed::State::new();
&STATE
}
}
impl crate::spis::Instance for peripherals::$type {
type Interrupt = crate::interrupt::$irq;
}
};
}
// ====================
impl<'d, T: Instance> SetConfig for Spis<'d, T> {
type Config = Config;
fn set_config(&mut self, config: &Self::Config) {
let r = T::regs();
// Configure mode.
let mode = config.mode;
r.config.write(|w| {
match mode {
MODE_0 => {
w.order().msb_first();
w.cpol().active_high();
w.cpha().leading();
}
MODE_1 => {
w.order().msb_first();
w.cpol().active_high();
w.cpha().trailing();
}
MODE_2 => {
w.order().msb_first();
w.cpol().active_low();
w.cpha().leading();
}
MODE_3 => {
w.order().msb_first();
w.cpol().active_low();
w.cpha().trailing();
}
}
w
});
// Set over-read character.
let orc = config.orc;
r.orc.write(|w| unsafe { w.orc().bits(orc) });
// Set default character.
let def = config.def;
r.def.write(|w| unsafe { w.def().bits(def) });
// Configure auto-acquire on 'transfer end' event.
let auto_acquire = config.auto_acquire;
r.shorts.write(|w| w.end_acquire().bit(auto_acquire));
}
}