#![feature(async_fn_in_trait)] #![allow(incomplete_features)] #![no_std] #![warn(missing_docs)] #![doc = include_str!("../README.md")] mod fmt; use embedded_storage::nor_flash::{ErrorType, NorFlash, NorFlashError, NorFlashErrorKind, ReadNorFlash}; use embedded_storage_async::nor_flash::NorFlash as AsyncNorFlash; const BOOT_MAGIC: u8 = 0xD0; const SWAP_MAGIC: u8 = 0xF0; /// A region in flash used by the bootloader. #[derive(Copy, Clone, Debug)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub struct Partition { /// Start of the flash region. pub from: usize, /// End of the flash region. pub to: usize, } impl Partition { /// Create a new partition with the provided range pub const fn new(from: usize, to: usize) -> Self { Self { from, to } } /// Return the length of the partition #[allow(clippy::len_without_is_empty)] pub const fn len(&self) -> usize { self.to - self.from } } /// The state of the bootloader after running prepare. #[derive(PartialEq, Eq, Debug)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum State { /// Bootloader is ready to boot the active partition. Boot, /// Bootloader has swapped the active partition with the dfu partition and will attempt boot. Swap, } /// Errors returned by bootloader #[derive(PartialEq, Eq, Debug)] pub enum BootError { /// Error from flash. Flash(NorFlashErrorKind), /// Invalid bootloader magic BadMagic, } #[cfg(feature = "defmt")] impl defmt::Format for BootError { fn format(&self, fmt: defmt::Formatter) { match self { BootError::Flash(_) => defmt::write!(fmt, "BootError::Flash(_)"), BootError::BadMagic => defmt::write!(fmt, "BootError::BadMagic"), } } } impl From for BootError where E: NorFlashError, { fn from(error: E) -> Self { BootError::Flash(error.kind()) } } /// Buffer aligned to 32 byte boundary, largest known alignment requirement for embassy-boot. #[repr(align(32))] pub struct AlignedBuffer(pub [u8; N]); impl AsRef<[u8]> for AlignedBuffer { fn as_ref(&self) -> &[u8] { &self.0 } } impl AsMut<[u8]> for AlignedBuffer { fn as_mut(&mut self) -> &mut [u8] { &mut self.0 } } /// Extension of the embedded-storage flash type information with block size and erase value. pub trait Flash: NorFlash + ReadNorFlash { /// The block size that should be used when writing to flash. For most builtin flashes, this is the same as the erase /// size of the flash, but for external QSPI flash modules, this can be lower. const BLOCK_SIZE: usize; /// The erase value of the flash. Typically the default of 0xFF is used, but some flashes use a different value. const ERASE_VALUE: u8 = 0xFF; } /// Trait defining the flash handles used for active and DFU partition pub trait FlashConfig { /// Flash type used for the state partition. type STATE: Flash; /// Flash type used for the active partition. type ACTIVE: Flash; /// Flash type used for the dfu partition. type DFU: Flash; /// Return flash instance used to write/read to/from active partition. fn active(&mut self) -> &mut Self::ACTIVE; /// Return flash instance used to write/read to/from dfu partition. fn dfu(&mut self) -> &mut Self::DFU; /// Return flash instance used to write/read to/from bootloader state. fn state(&mut self) -> &mut Self::STATE; } /// BootLoader works with any flash implementing embedded_storage and can also work with /// different page sizes and flash write sizes. pub struct BootLoader { // Page with current state of bootloader. The state partition has the following format: // | Range | Description | // | 0 - WRITE_SIZE | Magic indicating bootloader state. BOOT_MAGIC means boot, SWAP_MAGIC means swap. | // | WRITE_SIZE - N | Progress index used while swapping or reverting | state: Partition, // Location of the partition which will be booted from active: Partition, // Location of the partition which will be swapped in when requested dfu: Partition, } impl BootLoader { /// Create a new instance of a bootloader with the given partitions. /// /// - All partitions must be aligned with the PAGE_SIZE const generic parameter. /// - The dfu partition must be at least PAGE_SIZE bigger than the active partition. pub fn new(active: Partition, dfu: Partition, state: Partition) -> Self { Self { active, dfu, state } } /// Return the boot address for the active partition. pub fn boot_address(&self) -> usize { self.active.from } /// Perform necessary boot preparations like swapping images. /// /// The DFU partition is assumed to be 1 page bigger than the active partition for the swap /// algorithm to work correctly. /// /// SWAPPING /// /// Assume a flash size of 3 pages for the active partition, and 4 pages for the DFU partition. /// The swap index contains the copy progress, as to allow continuation of the copy process on /// power failure. The index counter is represented within 1 or more pages (depending on total /// flash size), where a page X is considered swapped if index at location (X + WRITE_SIZE) /// contains a zero value. This ensures that index updates can be performed atomically and /// avoid a situation where the wrong index value is set (page write size is "atomic"). /// /// +-----------+------------+--------+--------+--------+--------+ /// | Partition | Swap Index | Page 0 | Page 1 | Page 3 | Page 4 | /// +-----------+------------+--------+--------+--------+--------+ /// | Active | 0 | 1 | 2 | 3 | - | /// | DFU | 0 | 3 | 2 | 1 | X | /// +-----------+------------+--------+--------+--------+--------+ /// /// The algorithm starts by copying 'backwards', and after the first step, the layout is /// as follows: /// /// +-----------+------------+--------+--------+--------+--------+ /// | Partition | Swap Index | Page 0 | Page 1 | Page 3 | Page 4 | /// +-----------+------------+--------+--------+--------+--------+ /// | Active | 1 | 1 | 2 | 1 | - | /// | DFU | 1 | 3 | 2 | 1 | 3 | /// +-----------+------------+--------+--------+--------+--------+ /// /// The next iteration performs the same steps /// /// +-----------+------------+--------+--------+--------+--------+ /// | Partition | Swap Index | Page 0 | Page 1 | Page 3 | Page 4 | /// +-----------+------------+--------+--------+--------+--------+ /// | Active | 2 | 1 | 2 | 1 | - | /// | DFU | 2 | 3 | 2 | 2 | 3 | /// +-----------+------------+--------+--------+--------+--------+ /// /// And again until we're done /// /// +-----------+------------+--------+--------+--------+--------+ /// | Partition | Swap Index | Page 0 | Page 1 | Page 3 | Page 4 | /// +-----------+------------+--------+--------+--------+--------+ /// | Active | 3 | 3 | 2 | 1 | - | /// | DFU | 3 | 3 | 1 | 2 | 3 | /// +-----------+------------+--------+--------+--------+--------+ /// /// REVERTING /// /// The reverting algorithm uses the swap index to discover that images were swapped, but that /// the application failed to mark the boot successful. In this case, the revert algorithm will /// run. /// /// The revert index is located separately from the swap index, to ensure that revert can continue /// on power failure. /// /// The revert algorithm works forwards, by starting copying into the 'unused' DFU page at the start. /// /// +-----------+--------------+--------+--------+--------+--------+ /// | Partition | Revert Index | Page 0 | Page 1 | Page 3 | Page 4 | //*/ /// +-----------+--------------+--------+--------+--------+--------+ /// | Active | 3 | 1 | 2 | 1 | - | /// | DFU | 3 | 3 | 1 | 2 | 3 | /// +-----------+--------------+--------+--------+--------+--------+ /// /// /// +-----------+--------------+--------+--------+--------+--------+ /// | Partition | Revert Index | Page 0 | Page 1 | Page 3 | Page 4 | /// +-----------+--------------+--------+--------+--------+--------+ /// | Active | 3 | 1 | 2 | 1 | - | /// | DFU | 3 | 3 | 2 | 2 | 3 | /// +-----------+--------------+--------+--------+--------+--------+ /// /// +-----------+--------------+--------+--------+--------+--------+ /// | Partition | Revert Index | Page 0 | Page 1 | Page 3 | Page 4 | /// +-----------+--------------+--------+--------+--------+--------+ /// | Active | 3 | 1 | 2 | 3 | - | /// | DFU | 3 | 3 | 2 | 1 | 3 | /// +-----------+--------------+--------+--------+--------+--------+ /// pub fn prepare_boot( &mut self, p: &mut P, magic: &mut [u8], page: &mut [u8], ) -> Result { // Ensure we have enough progress pages to store copy progress assert_partitions(self.active, self.dfu, self.state, page.len(), P::STATE::WRITE_SIZE); assert_eq!(magic.len(), P::STATE::WRITE_SIZE); // Copy contents from partition N to active let state = self.read_state(p, magic)?; if state == State::Swap { // // Check if we already swapped. If we're in the swap state, this means we should revert // since the app has failed to mark boot as successful // if !self.is_swapped(p, magic, page)? { trace!("Swapping"); self.swap(p, magic, page)?; trace!("Swapping done"); } else { trace!("Reverting"); self.revert(p, magic, page)?; // Overwrite magic and reset progress let fstate = p.state(); magic.fill(!P::STATE::ERASE_VALUE); fstate.write(self.state.from as u32, magic)?; fstate.erase(self.state.from as u32, self.state.to as u32)?; magic.fill(BOOT_MAGIC); fstate.write(self.state.from as u32, magic)?; } } Ok(state) } fn is_swapped(&mut self, p: &mut P, magic: &mut [u8], page: &mut [u8]) -> Result { let page_size = page.len(); let page_count = self.active.len() / page_size; let progress = self.current_progress(p, magic)?; Ok(progress >= page_count * 2) } fn current_progress(&mut self, config: &mut P, aligned: &mut [u8]) -> Result { let write_size = aligned.len(); let max_index = ((self.state.len() - write_size) / write_size) - 1; aligned.fill(!P::STATE::ERASE_VALUE); let flash = config.state(); for i in 0..max_index { flash.read((self.state.from + write_size + i * write_size) as u32, aligned)?; if aligned.iter().any(|&b| b == P::STATE::ERASE_VALUE) { return Ok(i); } } Ok(max_index) } fn update_progress(&mut self, idx: usize, p: &mut P, magic: &mut [u8]) -> Result<(), BootError> { let flash = p.state(); let write_size = magic.len(); let w = self.state.from + write_size + idx * write_size; let aligned = magic; aligned.fill(!P::STATE::ERASE_VALUE); flash.write(w as u32, aligned)?; Ok(()) } fn active_addr(&self, n: usize, page_size: usize) -> usize { self.active.from + n * page_size } fn dfu_addr(&self, n: usize, page_size: usize) -> usize { self.dfu.from + n * page_size } fn copy_page_once_to_active( &mut self, idx: usize, from_page: usize, to_page: usize, p: &mut P, magic: &mut [u8], page: &mut [u8], ) -> Result<(), BootError> { let buf = page; if self.current_progress(p, magic)? <= idx { let mut offset = from_page; for chunk in buf.chunks_mut(P::DFU::BLOCK_SIZE) { p.dfu().read(offset as u32, chunk)?; offset += chunk.len(); } p.active().erase(to_page as u32, (to_page + buf.len()) as u32)?; let mut offset = to_page; for chunk in buf.chunks(P::ACTIVE::BLOCK_SIZE) { p.active().write(offset as u32, chunk)?; offset += chunk.len(); } self.update_progress(idx, p, magic)?; } Ok(()) } fn copy_page_once_to_dfu( &mut self, idx: usize, from_page: usize, to_page: usize, p: &mut P, magic: &mut [u8], page: &mut [u8], ) -> Result<(), BootError> { let buf = page; if self.current_progress(p, magic)? <= idx { let mut offset = from_page; for chunk in buf.chunks_mut(P::ACTIVE::BLOCK_SIZE) { p.active().read(offset as u32, chunk)?; offset += chunk.len(); } p.dfu().erase(to_page as u32, (to_page + buf.len()) as u32)?; let mut offset = to_page; for chunk in buf.chunks(P::DFU::BLOCK_SIZE) { p.dfu().write(offset as u32, chunk)?; offset += chunk.len(); } self.update_progress(idx, p, magic)?; } Ok(()) } fn swap(&mut self, p: &mut P, magic: &mut [u8], page: &mut [u8]) -> Result<(), BootError> { let page_size = page.len(); let page_count = self.active.len() / page_size; trace!("Page count: {}", page_count); for page_num in 0..page_count { trace!("COPY PAGE {}", page_num); // Copy active page to the 'next' DFU page. let active_page = self.active_addr(page_count - 1 - page_num, page_size); let dfu_page = self.dfu_addr(page_count - page_num, page_size); //trace!("Copy active {} to dfu {}", active_page, dfu_page); self.copy_page_once_to_dfu(page_num * 2, active_page, dfu_page, p, magic, page)?; // Copy DFU page to the active page let active_page = self.active_addr(page_count - 1 - page_num, page_size); let dfu_page = self.dfu_addr(page_count - 1 - page_num, page_size); //trace!("Copy dfy {} to active {}", dfu_page, active_page); self.copy_page_once_to_active(page_num * 2 + 1, dfu_page, active_page, p, magic, page)?; } Ok(()) } fn revert(&mut self, p: &mut P, magic: &mut [u8], page: &mut [u8]) -> Result<(), BootError> { let page_size = page.len(); let page_count = self.active.len() / page_size; for page_num in 0..page_count { // Copy the bad active page to the DFU page let active_page = self.active_addr(page_num, page_size); let dfu_page = self.dfu_addr(page_num, page_size); self.copy_page_once_to_dfu(page_count * 2 + page_num * 2, active_page, dfu_page, p, magic, page)?; // Copy the DFU page back to the active page let active_page = self.active_addr(page_num, page_size); let dfu_page = self.dfu_addr(page_num + 1, page_size); self.copy_page_once_to_active(page_count * 2 + page_num * 2 + 1, dfu_page, active_page, p, magic, page)?; } Ok(()) } fn read_state(&mut self, config: &mut P, magic: &mut [u8]) -> Result { let flash = config.state(); flash.read(self.state.from as u32, magic)?; if !magic.iter().any(|&b| b != SWAP_MAGIC) { Ok(State::Swap) } else { Ok(State::Boot) } } } fn assert_partitions(active: Partition, dfu: Partition, state: Partition, page_size: usize, write_size: usize) { assert_eq!(active.len() % page_size, 0); assert_eq!(dfu.len() % page_size, 0); assert!(dfu.len() - active.len() >= page_size); assert!(2 * (active.len() / page_size) <= (state.len() - write_size) / write_size); } /// Convenience provider that uses a single flash for all partitions. pub struct SingleFlashConfig<'a, F> where F: Flash, { flash: &'a mut F, } impl<'a, F> SingleFlashConfig<'a, F> where F: Flash, { /// Create a provider for a single flash. pub fn new(flash: &'a mut F) -> Self { Self { flash } } } impl<'a, F> FlashConfig for SingleFlashConfig<'a, F> where F: Flash, { type STATE = F; type ACTIVE = F; type DFU = F; fn active(&mut self) -> &mut Self::STATE { self.flash } fn dfu(&mut self) -> &mut Self::ACTIVE { self.flash } fn state(&mut self) -> &mut Self::DFU { self.flash } } /// A flash wrapper implementing the Flash and embedded_storage traits. pub struct BootFlash where F: NorFlash + ReadNorFlash, { flash: F, } impl BootFlash where F: NorFlash + ReadNorFlash, { /// Create a new instance of a bootable flash pub fn new(flash: F) -> Self { Self { flash } } } impl Flash for BootFlash where F: NorFlash + ReadNorFlash, { const BLOCK_SIZE: usize = BLOCK_SIZE; const ERASE_VALUE: u8 = ERASE_VALUE; } impl ErrorType for BootFlash where F: ReadNorFlash + NorFlash, { type Error = F::Error; } impl NorFlash for BootFlash where F: ReadNorFlash + NorFlash, { const WRITE_SIZE: usize = F::WRITE_SIZE; const ERASE_SIZE: usize = F::ERASE_SIZE; fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> { F::erase(&mut self.flash, from, to) } fn write(&mut self, offset: u32, bytes: &[u8]) -> Result<(), Self::Error> { F::write(&mut self.flash, offset, bytes) } } impl ReadNorFlash for BootFlash where F: ReadNorFlash + NorFlash, { const READ_SIZE: usize = F::READ_SIZE; fn read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Self::Error> { F::read(&mut self.flash, offset, bytes) } fn capacity(&self) -> usize { F::capacity(&self.flash) } } /// Convenience flash provider that uses separate flash instances for each partition. pub struct MultiFlashConfig<'a, ACTIVE, STATE, DFU> where ACTIVE: Flash, STATE: Flash, DFU: Flash, { active: &'a mut ACTIVE, state: &'a mut STATE, dfu: &'a mut DFU, } impl<'a, ACTIVE, STATE, DFU> MultiFlashConfig<'a, ACTIVE, STATE, DFU> where ACTIVE: Flash, STATE: Flash, DFU: Flash, { /// Create a new flash provider with separate configuration for all three partitions. pub fn new(active: &'a mut ACTIVE, state: &'a mut STATE, dfu: &'a mut DFU) -> Self { Self { active, state, dfu } } } impl<'a, ACTIVE, STATE, DFU> FlashConfig for MultiFlashConfig<'a, ACTIVE, STATE, DFU> where ACTIVE: Flash, STATE: Flash, DFU: Flash, { type STATE = STATE; type ACTIVE = ACTIVE; type DFU = DFU; fn active(&mut self) -> &mut Self::ACTIVE { self.active } fn dfu(&mut self) -> &mut Self::DFU { self.dfu } fn state(&mut self) -> &mut Self::STATE { self.state } } /// Errors returned by FirmwareUpdater #[derive(Debug)] pub enum FirmwareUpdaterError { /// Error from flash. Flash(NorFlashErrorKind), /// Signature errors. Signature(signature::Error), } #[cfg(feature = "defmt")] impl defmt::Format for FirmwareUpdaterError { fn format(&self, fmt: defmt::Formatter) { match self { FirmwareUpdaterError::Flash(_) => defmt::write!(fmt, "FirmwareUpdaterError::Flash(_)"), FirmwareUpdaterError::Signature(_) => defmt::write!(fmt, "FirmwareUpdaterError::Signature(_)"), } } } impl From for FirmwareUpdaterError where E: NorFlashError, { fn from(error: E) -> Self { FirmwareUpdaterError::Flash(error.kind()) } } /// FirmwareUpdater is an application API for interacting with the BootLoader without the ability to /// 'mess up' the internal bootloader state pub struct FirmwareUpdater { state: Partition, dfu: Partition, } impl Default for FirmwareUpdater { fn default() -> Self { extern "C" { static __bootloader_state_start: u32; static __bootloader_state_end: u32; static __bootloader_dfu_start: u32; static __bootloader_dfu_end: u32; } let dfu = unsafe { Partition::new( &__bootloader_dfu_start as *const u32 as usize, &__bootloader_dfu_end as *const u32 as usize, ) }; let state = unsafe { Partition::new( &__bootloader_state_start as *const u32 as usize, &__bootloader_state_end as *const u32 as usize, ) }; trace!("DFU: 0x{:x} - 0x{:x}", dfu.from, dfu.to); trace!("STATE: 0x{:x} - 0x{:x}", state.from, state.to); FirmwareUpdater::new(dfu, state) } } impl FirmwareUpdater { /// Create a firmware updater instance with partition ranges for the update and state partitions. pub const fn new(dfu: Partition, state: Partition) -> Self { Self { dfu, state } } /// Return the length of the DFU area pub fn firmware_len(&self) -> usize { self.dfu.len() } /// Obtain the current state. /// /// This is useful to check if the bootloader has just done a swap, in order /// to do verifications and self-tests of the new image before calling /// `mark_booted`. pub async fn get_state( &mut self, flash: &mut F, aligned: &mut [u8], ) -> Result { flash.read(self.state.from as u32, aligned).await?; if !aligned.iter().any(|&b| b != SWAP_MAGIC) { Ok(State::Swap) } else { Ok(State::Boot) } } /// Verify the DFU given a public key. If there is an error then DO NOT /// proceed with updating the firmware as it must be signed with a /// corresponding private key (otherwise it could be malicious firmware). /// /// Mark to trigger firmware swap on next boot if verify suceeds. /// /// If the "ed25519-salty" feature is set (or another similar feature) then the signature is expected to have /// been generated from a SHA-512 digest of the firmware bytes. /// /// If no signature feature is set then this method will always return a /// signature error. /// /// # Safety /// /// The `_aligned` buffer must have a size of F::WRITE_SIZE, and follow the alignment rules for the flash being read from /// and written to. #[cfg(feature = "_verify")] pub async fn verify_and_mark_updated( &mut self, _flash: &mut F, _public_key: &[u8], _signature: &[u8], _update_len: usize, _aligned: &mut [u8], ) -> Result<(), FirmwareUpdaterError> { let _end = self.dfu.from + _update_len; let _read_size = _aligned.len(); assert_eq!(_aligned.len(), F::WRITE_SIZE); assert!(_end <= self.dfu.to); #[cfg(feature = "ed25519-dalek")] { use ed25519_dalek::{Digest, PublicKey, Sha512, Signature, SignatureError, Verifier}; let into_signature_error = |e: SignatureError| FirmwareUpdaterError::Signature(e.into()); let public_key = PublicKey::from_bytes(_public_key).map_err(into_signature_error)?; let signature = Signature::from_bytes(_signature).map_err(into_signature_error)?; let mut digest = Sha512::new(); let mut offset = self.dfu.from; let last_offset = _end / _read_size * _read_size; while offset < last_offset { _flash.read(offset as u32, _aligned).await?; digest.update(&_aligned); offset += _read_size; } let remaining = _end % _read_size; if remaining > 0 { _flash.read(last_offset as u32, _aligned).await?; digest.update(&_aligned[0..remaining]); } public_key .verify(&digest.finalize(), &signature) .map_err(into_signature_error)? } #[cfg(feature = "ed25519-salty")] { use salty::constants::{PUBLICKEY_SERIALIZED_LENGTH, SIGNATURE_SERIALIZED_LENGTH}; use salty::{PublicKey, Sha512, Signature}; fn into_signature_error(_: E) -> FirmwareUpdaterError { FirmwareUpdaterError::Signature(signature::Error::default()) } let public_key: [u8; PUBLICKEY_SERIALIZED_LENGTH] = _public_key.try_into().map_err(into_signature_error)?; let public_key = PublicKey::try_from(&public_key).map_err(into_signature_error)?; let signature: [u8; SIGNATURE_SERIALIZED_LENGTH] = _signature.try_into().map_err(into_signature_error)?; let signature = Signature::try_from(&signature).map_err(into_signature_error)?; let mut digest = Sha512::new(); let mut offset = self.dfu.from; let last_offset = _end / _read_size * _read_size; while offset < last_offset { _flash.read(offset as u32, _aligned).await?; digest.update(&_aligned); offset += _read_size; } let remaining = _end % _read_size; if remaining > 0 { _flash.read(last_offset as u32, _aligned).await?; digest.update(&_aligned[0..remaining]); } let message = digest.finalize(); let r = public_key.verify(&message, &signature); trace!( "Verifying with public key {}, signature {} and message {} yields ok: {}", public_key.to_bytes(), signature.to_bytes(), message, r.is_ok() ); r.map_err(into_signature_error)? } self.set_magic(_aligned, SWAP_MAGIC, _flash).await } /// Mark to trigger firmware swap on next boot. /// /// # Safety /// /// The `aligned` buffer must have a size of F::WRITE_SIZE, and follow the alignment rules for the flash being written to. #[cfg(not(feature = "_verify"))] pub async fn mark_updated( &mut self, flash: &mut F, aligned: &mut [u8], ) -> Result<(), FirmwareUpdaterError> { assert_eq!(aligned.len(), F::WRITE_SIZE); self.set_magic(aligned, SWAP_MAGIC, flash).await } /// Mark firmware boot successful and stop rollback on reset. /// /// # Safety /// /// The `aligned` buffer must have a size of F::WRITE_SIZE, and follow the alignment rules for the flash being written to. pub async fn mark_booted( &mut self, flash: &mut F, aligned: &mut [u8], ) -> Result<(), FirmwareUpdaterError> { assert_eq!(aligned.len(), F::WRITE_SIZE); self.set_magic(aligned, BOOT_MAGIC, flash).await } async fn set_magic( &mut self, aligned: &mut [u8], magic: u8, flash: &mut F, ) -> Result<(), FirmwareUpdaterError> { flash.read(self.state.from as u32, aligned).await?; if aligned.iter().any(|&b| b != magic) { aligned.fill(0); flash.write(self.state.from as u32, aligned).await?; flash.erase(self.state.from as u32, self.state.to as u32).await?; aligned.fill(magic); flash.write(self.state.from as u32, aligned).await?; } Ok(()) } /// Write data to a flash page. /// /// The buffer must follow alignment requirements of the target flash and a multiple of page size big. /// /// # Safety /// /// Failing to meet alignment and size requirements may result in a panic. pub async fn write_firmware( &mut self, offset: usize, data: &[u8], flash: &mut F, block_size: usize, ) -> Result<(), FirmwareUpdaterError> { assert!(data.len() >= F::ERASE_SIZE); flash .erase( (self.dfu.from + offset) as u32, (self.dfu.from + offset + data.len()) as u32, ) .await?; trace!( "Erased from {} to {}", self.dfu.from + offset, self.dfu.from + offset + data.len() ); FirmwareWriter(self.dfu) .write_block(offset, data, flash, block_size) .await?; Ok(()) } /// Prepare for an incoming DFU update by erasing the entire DFU area and /// returning a `FirmwareWriter`. /// /// Using this instead of `write_firmware` allows for an optimized API in /// exchange for added complexity. pub async fn prepare_update( &mut self, flash: &mut F, ) -> Result { flash.erase((self.dfu.from) as u32, (self.dfu.to) as u32).await?; trace!("Erased from {} to {}", self.dfu.from, self.dfu.to); Ok(FirmwareWriter(self.dfu)) } // // Blocking API // /// Obtain the current state. /// /// This is useful to check if the bootloader has just done a swap, in order /// to do verifications and self-tests of the new image before calling /// `mark_booted`. pub fn get_state_blocking( &mut self, flash: &mut F, aligned: &mut [u8], ) -> Result { flash.read(self.state.from as u32, aligned)?; if !aligned.iter().any(|&b| b != SWAP_MAGIC) { Ok(State::Swap) } else { Ok(State::Boot) } } /// Verify the DFU given a public key. If there is an error then DO NOT /// proceed with updating the firmware as it must be signed with a /// corresponding private key (otherwise it could be malicious firmware). /// /// Mark to trigger firmware swap on next boot if verify suceeds. /// /// If the "ed25519-salty" feature is set (or another similar feature) then the signature is expected to have /// been generated from a SHA-512 digest of the firmware bytes. /// /// If no signature feature is set then this method will always return a /// signature error. /// /// # Safety /// /// The `_aligned` buffer must have a size of F::WRITE_SIZE, and follow the alignment rules for the flash being read from /// and written to. #[cfg(feature = "_verify")] pub fn verify_and_mark_updated_blocking( &mut self, _flash: &mut F, _public_key: &[u8], _signature: &[u8], _update_len: usize, _aligned: &mut [u8], ) -> Result<(), FirmwareUpdaterError> { let _end = self.dfu.from + _update_len; let _read_size = _aligned.len(); assert_eq!(_aligned.len(), F::WRITE_SIZE); assert!(_end <= self.dfu.to); #[cfg(feature = "ed25519-dalek")] { use ed25519_dalek::{Digest, PublicKey, Sha512, Signature, SignatureError, Verifier}; let into_signature_error = |e: SignatureError| FirmwareUpdaterError::Signature(e.into()); let public_key = PublicKey::from_bytes(_public_key).map_err(into_signature_error)?; let signature = Signature::from_bytes(_signature).map_err(into_signature_error)?; let mut digest = Sha512::new(); let mut offset = self.dfu.from; let last_offset = _end / _read_size * _read_size; while offset < last_offset { _flash.read(offset as u32, _aligned)?; digest.update(&_aligned); offset += _read_size; } let remaining = _end % _read_size; if remaining > 0 { _flash.read(last_offset as u32, _aligned)?; digest.update(&_aligned[0..remaining]); } public_key .verify(&digest.finalize(), &signature) .map_err(into_signature_error)? } #[cfg(feature = "ed25519-salty")] { use salty::constants::{PUBLICKEY_SERIALIZED_LENGTH, SIGNATURE_SERIALIZED_LENGTH}; use salty::{PublicKey, Sha512, Signature}; fn into_signature_error(_: E) -> FirmwareUpdaterError { FirmwareUpdaterError::Signature(signature::Error::default()) } let public_key: [u8; PUBLICKEY_SERIALIZED_LENGTH] = _public_key.try_into().map_err(into_signature_error)?; let public_key = PublicKey::try_from(&public_key).map_err(into_signature_error)?; let signature: [u8; SIGNATURE_SERIALIZED_LENGTH] = _signature.try_into().map_err(into_signature_error)?; let signature = Signature::try_from(&signature).map_err(into_signature_error)?; let mut digest = Sha512::new(); let mut offset = self.dfu.from; let last_offset = _end / _read_size * _read_size; while offset < last_offset { _flash.read(offset as u32, _aligned)?; digest.update(&_aligned); offset += _read_size; } let remaining = _end % _read_size; if remaining > 0 { _flash.read(last_offset as u32, _aligned)?; digest.update(&_aligned[0..remaining]); } let message = digest.finalize(); let r = public_key.verify(&message, &signature); trace!( "Verifying with public key {}, signature {} and message {} yields ok: {}", public_key.to_bytes(), signature.to_bytes(), message, r.is_ok() ); r.map_err(into_signature_error)? } self.set_magic_blocking(_aligned, SWAP_MAGIC, _flash) } /// Mark to trigger firmware swap on next boot. /// /// # Safety /// /// The `aligned` buffer must have a size of F::WRITE_SIZE, and follow the alignment rules for the flash being written to. #[cfg(not(feature = "_verify"))] pub fn mark_updated_blocking( &mut self, flash: &mut F, aligned: &mut [u8], ) -> Result<(), FirmwareUpdaterError> { assert_eq!(aligned.len(), F::WRITE_SIZE); self.set_magic_blocking(aligned, SWAP_MAGIC, flash) } /// Mark firmware boot successful and stop rollback on reset. /// /// # Safety /// /// The `aligned` buffer must have a size of F::WRITE_SIZE, and follow the alignment rules for the flash being written to. pub fn mark_booted_blocking( &mut self, flash: &mut F, aligned: &mut [u8], ) -> Result<(), FirmwareUpdaterError> { assert_eq!(aligned.len(), F::WRITE_SIZE); self.set_magic_blocking(aligned, BOOT_MAGIC, flash) } fn set_magic_blocking( &mut self, aligned: &mut [u8], magic: u8, flash: &mut F, ) -> Result<(), FirmwareUpdaterError> { flash.read(self.state.from as u32, aligned)?; if aligned.iter().any(|&b| b != magic) { aligned.fill(0); flash.write(self.state.from as u32, aligned)?; flash.erase(self.state.from as u32, self.state.to as u32)?; aligned.fill(magic); flash.write(self.state.from as u32, aligned)?; } Ok(()) } /// Write data to a flash page. /// /// The buffer must follow alignment requirements of the target flash and a multiple of page size big. /// /// # Safety /// /// Failing to meet alignment and size requirements may result in a panic. pub fn write_firmware_blocking( &mut self, offset: usize, data: &[u8], flash: &mut F, block_size: usize, ) -> Result<(), FirmwareUpdaterError> { assert!(data.len() >= F::ERASE_SIZE); flash.erase( (self.dfu.from + offset) as u32, (self.dfu.from + offset + data.len()) as u32, )?; trace!( "Erased from {} to {}", self.dfu.from + offset, self.dfu.from + offset + data.len() ); FirmwareWriter(self.dfu).write_block_blocking(offset, data, flash, block_size)?; Ok(()) } /// Prepare for an incoming DFU update by erasing the entire DFU area and /// returning a `FirmwareWriter`. /// /// Using this instead of `write_firmware_blocking` allows for an optimized /// API in exchange for added complexity. pub fn prepare_update_blocking( &mut self, flash: &mut F, ) -> Result { flash.erase((self.dfu.from) as u32, (self.dfu.to) as u32)?; trace!("Erased from {} to {}", self.dfu.from, self.dfu.to); Ok(FirmwareWriter(self.dfu)) } } /// FirmwareWriter allows writing blocks to an already erased flash. pub struct FirmwareWriter(Partition); impl FirmwareWriter { /// Write data to a flash page. /// /// The buffer must follow alignment requirements of the target flash and a multiple of page size big. /// /// # Safety /// /// Failing to meet alignment and size requirements may result in a panic. pub async fn write_block( &mut self, offset: usize, data: &[u8], flash: &mut F, block_size: usize, ) -> Result<(), F::Error> { trace!( "Writing firmware at offset 0x{:x} len {}", self.0.from + offset, data.len() ); let mut write_offset = self.0.from + offset; for chunk in data.chunks(block_size) { trace!("Wrote chunk at {}: {:?}", write_offset, chunk); flash.write(write_offset as u32, chunk).await?; write_offset += chunk.len(); } /* trace!("Wrote data, reading back for verification"); let mut buf: [u8; 4096] = [0; 4096]; let mut data_offset = 0; let mut read_offset = self.dfu.from + offset; for chunk in buf.chunks_mut(block_size) { flash.read(read_offset as u32, chunk).await?; trace!("Read chunk at {}: {:?}", read_offset, chunk); assert_eq!(&data[data_offset..data_offset + block_size], chunk); read_offset += chunk.len(); data_offset += chunk.len(); } */ Ok(()) } /// Write data to a flash page. /// /// The buffer must follow alignment requirements of the target flash and a multiple of page size big. /// /// # Safety /// /// Failing to meet alignment and size requirements may result in a panic. pub fn write_block_blocking( &mut self, offset: usize, data: &[u8], flash: &mut F, block_size: usize, ) -> Result<(), F::Error> { trace!( "Writing firmware at offset 0x{:x} len {}", self.0.from + offset, data.len() ); let mut write_offset = self.0.from + offset; for chunk in data.chunks(block_size) { trace!("Wrote chunk at {}: {:?}", write_offset, chunk); flash.write(write_offset as u32, chunk)?; write_offset += chunk.len(); } /* trace!("Wrote data, reading back for verification"); let mut buf: [u8; 4096] = [0; 4096]; let mut data_offset = 0; let mut read_offset = self.dfu.from + offset; for chunk in buf.chunks_mut(block_size) { flash.read(read_offset as u32, chunk).await?; trace!("Read chunk at {}: {:?}", read_offset, chunk); assert_eq!(&data[data_offset..data_offset + block_size], chunk); read_offset += chunk.len(); data_offset += chunk.len(); } */ Ok(()) } } #[cfg(test)] mod tests { use core::convert::Infallible; use embedded_storage::nor_flash::ErrorType; use embedded_storage_async::nor_flash::ReadNorFlash as AsyncReadNorFlash; use futures::executor::block_on; use super::*; /* #[test] fn test_bad_magic() { let mut flash = MemFlash([0xff; 131072]); let mut flash = SingleFlashConfig::new(&mut flash); let mut bootloader = BootLoader::<4096>::new(ACTIVE, DFU, STATE); assert_eq!( bootloader.prepare_boot(&mut flash), Err(BootError::BadMagic) ); } */ #[test] fn test_boot_state() { const STATE: Partition = Partition::new(0, 4096); const ACTIVE: Partition = Partition::new(4096, 61440); const DFU: Partition = Partition::new(61440, 122880); let mut flash = MemFlash::<131072, 4096, 4>([0xff; 131072]); flash.0[0..4].copy_from_slice(&[BOOT_MAGIC; 4]); let mut flash = SingleFlashConfig::new(&mut flash); let mut bootloader: BootLoader = BootLoader::new(ACTIVE, DFU, STATE); let mut magic = [0; 4]; let mut page = [0; 4096]; assert_eq!( State::Boot, bootloader.prepare_boot(&mut flash, &mut magic, &mut page).unwrap() ); } #[test] #[cfg(not(feature = "_verify"))] fn test_swap_state() { const STATE: Partition = Partition::new(0, 4096); const ACTIVE: Partition = Partition::new(4096, 61440); const DFU: Partition = Partition::new(61440, 122880); let mut flash = MemFlash::<131072, 4096, 4>([0xff; 131072]); let original: [u8; ACTIVE.len()] = [rand::random::(); ACTIVE.len()]; let update: [u8; DFU.len()] = [rand::random::(); DFU.len()]; let mut aligned = [0; 4]; for i in ACTIVE.from..ACTIVE.to { flash.0[i] = original[i - ACTIVE.from]; } let mut bootloader: BootLoader = BootLoader::new(ACTIVE, DFU, STATE); let mut updater = FirmwareUpdater::new(DFU, STATE); let mut offset = 0; for chunk in update.chunks(4096) { block_on(updater.write_firmware(offset, chunk, &mut flash, 4096)).unwrap(); offset += chunk.len(); } block_on(updater.mark_updated(&mut flash, &mut aligned)).unwrap(); let mut magic = [0; 4]; let mut page = [0; 4096]; assert_eq!( State::Swap, bootloader .prepare_boot(&mut SingleFlashConfig::new(&mut flash), &mut magic, &mut page) .unwrap() ); for i in ACTIVE.from..ACTIVE.to { assert_eq!(flash.0[i], update[i - ACTIVE.from], "Index {}", i); } // First DFU page is untouched for i in DFU.from + 4096..DFU.to { assert_eq!(flash.0[i], original[i - DFU.from - 4096], "Index {}", i); } // Running again should cause a revert assert_eq!( State::Swap, bootloader .prepare_boot(&mut SingleFlashConfig::new(&mut flash), &mut magic, &mut page) .unwrap() ); for i in ACTIVE.from..ACTIVE.to { assert_eq!(flash.0[i], original[i - ACTIVE.from], "Index {}", i); } // Last page is untouched for i in DFU.from..DFU.to - 4096 { assert_eq!(flash.0[i], update[i - DFU.from], "Index {}", i); } // Mark as booted block_on(updater.mark_booted(&mut flash, &mut aligned)).unwrap(); assert_eq!( State::Boot, bootloader .prepare_boot(&mut SingleFlashConfig::new(&mut flash), &mut magic, &mut page) .unwrap() ); } #[test] #[cfg(not(feature = "_verify"))] fn test_separate_flash_active_page_biggest() { const STATE: Partition = Partition::new(2048, 4096); const ACTIVE: Partition = Partition::new(4096, 16384); const DFU: Partition = Partition::new(0, 16384); let mut active = MemFlash::<16384, 4096, 8>([0xff; 16384]); let mut dfu = MemFlash::<16384, 2048, 8>([0xff; 16384]); let mut state = MemFlash::<4096, 128, 4>([0xff; 4096]); let mut aligned = [0; 4]; let original: [u8; ACTIVE.len()] = [rand::random::(); ACTIVE.len()]; let update: [u8; DFU.len()] = [rand::random::(); DFU.len()]; for i in ACTIVE.from..ACTIVE.to { active.0[i] = original[i - ACTIVE.from]; } let mut updater = FirmwareUpdater::new(DFU, STATE); let mut offset = 0; for chunk in update.chunks(2048) { block_on(updater.write_firmware(offset, chunk, &mut dfu, chunk.len())).unwrap(); offset += chunk.len(); } block_on(updater.mark_updated(&mut state, &mut aligned)).unwrap(); let mut bootloader: BootLoader = BootLoader::new(ACTIVE, DFU, STATE); let mut magic = [0; 4]; let mut page = [0; 4096]; assert_eq!( State::Swap, bootloader .prepare_boot( &mut MultiFlashConfig::new(&mut active, &mut state, &mut dfu), &mut magic, &mut page ) .unwrap() ); for i in ACTIVE.from..ACTIVE.to { assert_eq!(active.0[i], update[i - ACTIVE.from], "Index {}", i); } // First DFU page is untouched for i in DFU.from + 4096..DFU.to { assert_eq!(dfu.0[i], original[i - DFU.from - 4096], "Index {}", i); } } #[test] #[cfg(not(feature = "_verify"))] fn test_separate_flash_dfu_page_biggest() { const STATE: Partition = Partition::new(2048, 4096); const ACTIVE: Partition = Partition::new(4096, 16384); const DFU: Partition = Partition::new(0, 16384); let mut aligned = [0; 4]; let mut active = MemFlash::<16384, 2048, 4>([0xff; 16384]); let mut dfu = MemFlash::<16384, 4096, 8>([0xff; 16384]); let mut state = MemFlash::<4096, 128, 4>([0xff; 4096]); let original: [u8; ACTIVE.len()] = [rand::random::(); ACTIVE.len()]; let update: [u8; DFU.len()] = [rand::random::(); DFU.len()]; for i in ACTIVE.from..ACTIVE.to { active.0[i] = original[i - ACTIVE.from]; } let mut updater = FirmwareUpdater::new(DFU, STATE); let mut offset = 0; for chunk in update.chunks(4096) { block_on(updater.write_firmware(offset, chunk, &mut dfu, chunk.len())).unwrap(); offset += chunk.len(); } block_on(updater.mark_updated(&mut state, &mut aligned)).unwrap(); let mut bootloader: BootLoader = BootLoader::new(ACTIVE, DFU, STATE); let mut magic = [0; 4]; let mut page = [0; 4096]; assert_eq!( State::Swap, bootloader .prepare_boot( &mut MultiFlashConfig::new(&mut active, &mut state, &mut dfu,), &mut magic, &mut page ) .unwrap() ); for i in ACTIVE.from..ACTIVE.to { assert_eq!(active.0[i], update[i - ACTIVE.from], "Index {}", i); } // First DFU page is untouched for i in DFU.from + 4096..DFU.to { assert_eq!(dfu.0[i], original[i - DFU.from - 4096], "Index {}", i); } } #[test] #[should_panic] fn test_range_asserts() { const ACTIVE: Partition = Partition::new(4096, 4194304); const DFU: Partition = Partition::new(4194304, 2 * 4194304); const STATE: Partition = Partition::new(0, 4096); assert_partitions(ACTIVE, DFU, STATE, 4096, 4); } #[test] #[cfg(feature = "_verify")] fn test_verify() { // The following key setup is based on: // https://docs.rs/ed25519-dalek/latest/ed25519_dalek/#example use ed25519_dalek::Keypair; use rand::rngs::OsRng; let mut csprng = OsRng {}; let keypair: Keypair = Keypair::generate(&mut csprng); use ed25519_dalek::{Digest, Sha512, Signature, Signer}; let firmware: &[u8] = b"This are bytes that would otherwise be firmware bytes for DFU."; let mut digest = Sha512::new(); digest.update(&firmware); let message = digest.finalize(); let signature: Signature = keypair.sign(&message); use ed25519_dalek::PublicKey; let public_key: PublicKey = keypair.public; // Setup flash const STATE: Partition = Partition::new(0, 4096); const DFU: Partition = Partition::new(4096, 8192); let mut flash = MemFlash::<8192, 4096, 4>([0xff; 8192]); let firmware_len = firmware.len(); let mut write_buf = [0; 4096]; write_buf[0..firmware_len].copy_from_slice(firmware); NorFlash::write(&mut flash, DFU.from as u32, &write_buf).unwrap(); // On with the test let mut updater = FirmwareUpdater::new(DFU, STATE); let mut aligned = [0; 4]; assert!(block_on(updater.verify_and_mark_updated( &mut flash, &public_key.to_bytes(), &signature.to_bytes(), firmware_len, &mut aligned, )) .is_ok()); } struct MemFlash([u8; SIZE]); impl NorFlash for MemFlash { const WRITE_SIZE: usize = WRITE_SIZE; const ERASE_SIZE: usize = ERASE_SIZE; fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> { let from = from as usize; let to = to as usize; assert!(from % ERASE_SIZE == 0); assert!(to % ERASE_SIZE == 0, "To: {}, erase size: {}", to, ERASE_SIZE); for i in from..to { self.0[i] = 0xFF; } Ok(()) } fn write(&mut self, offset: u32, data: &[u8]) -> Result<(), Self::Error> { assert!(data.len() % WRITE_SIZE == 0); assert!(offset as usize % WRITE_SIZE == 0); assert!(offset as usize + data.len() <= SIZE); self.0[offset as usize..offset as usize + data.len()].copy_from_slice(data); Ok(()) } } impl ErrorType for MemFlash { type Error = Infallible; } impl ReadNorFlash for MemFlash { const READ_SIZE: usize = 1; fn read(&mut self, offset: u32, buf: &mut [u8]) -> Result<(), Self::Error> { let len = buf.len(); buf[..].copy_from_slice(&self.0[offset as usize..offset as usize + len]); Ok(()) } fn capacity(&self) -> usize { SIZE } } impl super::Flash for MemFlash { const BLOCK_SIZE: usize = ERASE_SIZE; const ERASE_VALUE: u8 = 0xFF; } impl AsyncReadNorFlash for MemFlash { const READ_SIZE: usize = 1; async fn read(&mut self, offset: u32, buf: &mut [u8]) -> Result<(), Self::Error> { let len = buf.len(); buf[..].copy_from_slice(&self.0[offset as usize..offset as usize + len]); Ok(()) } fn capacity(&self) -> usize { SIZE } } impl AsyncNorFlash for MemFlash { const WRITE_SIZE: usize = WRITE_SIZE; const ERASE_SIZE: usize = ERASE_SIZE; async fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> { let from = from as usize; let to = to as usize; assert!(from % ERASE_SIZE == 0); assert!(to % ERASE_SIZE == 0); for i in from..to { self.0[i] = 0xFF; } Ok(()) } async fn write(&mut self, offset: u32, data: &[u8]) -> Result<(), Self::Error> { info!("Writing {} bytes to 0x{:x}", data.len(), offset); assert!(data.len() % WRITE_SIZE == 0); assert!(offset as usize % WRITE_SIZE == 0); assert!( offset as usize + data.len() <= SIZE, "OFFSET: {}, LEN: {}, FLASH SIZE: {}", offset, data.len(), SIZE ); self.0[offset as usize..offset as usize + data.len()].copy_from_slice(data); Ok(()) } } }