use core::convert::TryInto; use core::ptr::write_volatile; use core::sync::atomic::{fence, Ordering}; use super::{FlashRegion, FlashSector, BANK1_REGION, FLASH_REGIONS, WRITE_SIZE}; use crate::flash::Error; use crate::pac; pub const fn is_default_layout() -> bool { true } const fn is_dual_bank() -> bool { FLASH_REGIONS.len() >= 2 } pub fn get_flash_regions() -> &'static [&'static FlashRegion] { &FLASH_REGIONS } pub(crate) unsafe fn lock() { pac::FLASH.bank(0).cr().modify(|w| w.set_lock(true)); if is_dual_bank() { pac::FLASH.bank(1).cr().modify(|w| w.set_lock(true)); } } pub(crate) unsafe fn unlock() { pac::FLASH.bank(0).keyr().write(|w| w.set_keyr(0x4567_0123)); pac::FLASH.bank(0).keyr().write(|w| w.set_keyr(0xCDEF_89AB)); if is_dual_bank() { pac::FLASH.bank(1).keyr().write(|w| w.set_keyr(0x4567_0123)); pac::FLASH.bank(1).keyr().write(|w| w.set_keyr(0xCDEF_89AB)); } } pub(crate) unsafe fn enable_blocking_write() { assert_eq!(0, WRITE_SIZE % 4); } pub(crate) unsafe fn disable_blocking_write() {} pub(crate) unsafe fn blocking_write(start_address: u32, buf: &[u8; WRITE_SIZE]) -> Result<(), Error> { // We cannot have the write setup sequence in begin_write as it depends on the address let bank = if start_address < BANK1_REGION.end() { pac::FLASH.bank(0) } else { pac::FLASH.bank(1) }; bank.cr().write(|w| { w.set_pg(true); #[cfg(flash_h7)] w.set_psize(2); // 32 bits at once }); cortex_m::asm::isb(); cortex_m::asm::dsb(); fence(Ordering::SeqCst); let mut res = None; let mut address = start_address; for val in buf.chunks(4) { write_volatile(address as *mut u32, u32::from_le_bytes(val.try_into().unwrap())); address += val.len() as u32; res = Some(blocking_wait_ready(bank)); bank.sr().modify(|w| { if w.eop() { w.set_eop(true); } }); if res.unwrap().is_err() { break; } } bank.cr().write(|w| w.set_pg(false)); cortex_m::asm::isb(); cortex_m::asm::dsb(); fence(Ordering::SeqCst); res.unwrap() } pub(crate) unsafe fn blocking_erase_sector(sector: &FlashSector) -> Result<(), Error> { let bank = pac::FLASH.bank(sector.bank as usize); bank.cr().modify(|w| { w.set_ser(true); #[cfg(flash_h7)] w.set_snb(sector.index_in_bank); #[cfg(flash_h7ab)] w.set_ssn(sector.index_in_bank); }); bank.cr().modify(|w| { w.set_start(true); }); let ret: Result<(), Error> = blocking_wait_ready(bank); bank.cr().modify(|w| w.set_ser(false)); bank_clear_all_err(bank); ret } pub(crate) unsafe fn clear_all_err() { bank_clear_all_err(pac::FLASH.bank(0)); bank_clear_all_err(pac::FLASH.bank(1)); } unsafe fn bank_clear_all_err(bank: pac::flash::Bank) { // read and write back the same value. // This clears all "write 0 to clear" bits. bank.sr().modify(|_| {}); } unsafe fn blocking_wait_ready(bank: pac::flash::Bank) -> Result<(), Error> { loop { let sr = bank.sr().read(); if !sr.bsy() && !sr.qw() { if sr.wrperr() { return Err(Error::Protected); } if sr.pgserr() { error!("pgserr"); return Err(Error::Seq); } if sr.incerr() { // writing to a different address when programming 256 bit word was not finished error!("incerr"); return Err(Error::Seq); } if sr.crcrderr() { error!("crcrderr"); return Err(Error::Seq); } if sr.operr() { return Err(Error::Prog); } if sr.sneccerr1() { // single ECC error return Err(Error::Prog); } if sr.dbeccerr() { // double ECC error return Err(Error::Prog); } if sr.rdperr() { return Err(Error::Protected); } if sr.rdserr() { return Err(Error::Protected); } return Ok(()); } } }