#![macro_use] use core::future::poll_fn; use core::task::Poll; use embassy_hal_internal::{into_ref, PeripheralRef}; use embassy_sync::waitqueue::AtomicWaker; use rand_core::{CryptoRng, RngCore}; use crate::{pac, peripherals, Peripheral}; pub(crate) static RNG_WAKER: AtomicWaker = AtomicWaker::new(); #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum Error { SeedError, ClockError, } pub struct Rng<'d, T: Instance> { _inner: PeripheralRef<'d, T>, } impl<'d, T: Instance> Rng<'d, T> { pub fn new(inner: impl Peripheral

+ 'd) -> Self { T::enable(); T::reset(); into_ref!(inner); let mut random = Self { _inner: inner }; random.reset(); random } #[cfg(rng_v1)] pub fn reset(&mut self) { // rng_v2 locks up on seed error, needs reset #[cfg(rng_v2)] if T::regs().sr().read().seis() { T::reset(); } T::regs().cr().modify(|reg| { reg.set_rngen(true); reg.set_ie(true); }); T::regs().sr().modify(|reg| { reg.set_seis(false); reg.set_ceis(false); }); // Reference manual says to discard the first. let _ = self.next_u32(); } #[cfg(not(rng_v1))] pub fn reset(&mut self) { T::regs().cr().modify(|reg| { reg.set_rngen(false); reg.set_condrst(true); // set RNG config "A" according to reference manual // this has to be written within the same write access as setting the CONDRST bit reg.set_nistc(pac::rng::vals::Nistc::DEFAULT); reg.set_rng_config1(pac::rng::vals::RngConfig1::CONFIGA); reg.set_rng_config2(pac::rng::vals::RngConfig2::CONFIGA_B); reg.set_rng_config3(pac::rng::vals::RngConfig3::CONFIGA); reg.set_clkdiv(pac::rng::vals::Clkdiv::NODIV); }); // wait for CONDRST to be set while !T::regs().cr().read().condrst() {} // magic number must be written immediately before every read or write access to HTCR T::regs().htcr().write(|w| w.set_htcfg(pac::rng::vals::Htcfg::MAGIC)); // write recommended value according to reference manual // note: HTCR can only be written during conditioning T::regs() .htcr() .write(|w| w.set_htcfg(pac::rng::vals::Htcfg::RECOMMENDED)); // finish conditioning T::regs().cr().modify(|reg| { reg.set_rngen(true); reg.set_condrst(false); reg.set_ie(true); }); // wait for CONDRST to be reset while T::regs().cr().read().condrst() {} } pub async fn async_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { T::regs().cr().modify(|reg| { reg.set_rngen(true); }); for chunk in dest.chunks_mut(4) { poll_fn(|cx| { RNG_WAKER.register(cx.waker()); T::regs().cr().modify(|reg| { reg.set_ie(true); }); let bits = T::regs().sr().read(); if bits.drdy() { Poll::Ready(Ok(())) } else if bits.seis() { self.reset(); Poll::Ready(Err(Error::SeedError)) } else if bits.ceis() { self.reset(); Poll::Ready(Err(Error::ClockError)) } else { Poll::Pending } }) .await?; let random_bytes = T::regs().dr().read().to_be_bytes(); for (dest, src) in chunk.iter_mut().zip(random_bytes.iter()) { *dest = *src } } Ok(()) } } impl<'d, T: Instance> RngCore for Rng<'d, T> { fn next_u32(&mut self) -> u32 { loop { let sr = T::regs().sr().read(); if sr.seis() | sr.ceis() { self.reset(); } else if sr.drdy() { return T::regs().dr().read(); } } } fn next_u64(&mut self) -> u64 { let mut rand = self.next_u32() as u64; rand |= (self.next_u32() as u64) << 32; rand } fn fill_bytes(&mut self, dest: &mut [u8]) { for chunk in dest.chunks_mut(4) { let rand = self.next_u32(); for (slot, num) in chunk.iter_mut().zip(rand.to_be_bytes().iter()) { *slot = *num } } } fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand_core::Error> { self.fill_bytes(dest); Ok(()) } } impl<'d, T: Instance> CryptoRng for Rng<'d, T> {} pub(crate) mod sealed { use super::*; pub trait Instance { fn regs() -> pac::rng::Rng; } } pub trait Instance: sealed::Instance + crate::rcc::RccPeripheral {} foreach_peripheral!( (rng, $inst:ident) => { impl Instance for peripherals::$inst {} impl sealed::Instance for peripherals::$inst { fn regs() -> crate::pac::rng::Rng { crate::pac::RNG } } }; ); #[cfg(feature = "rt")] macro_rules! irq { ($irq:ident) => { mod rng_irq { use crate::interrupt; #[interrupt] unsafe fn $irq() { let bits = $crate::pac::RNG.sr().read(); if bits.drdy() || bits.seis() || bits.ceis() { $crate::pac::RNG.cr().write(|reg| reg.set_ie(false)); $crate::rng::RNG_WAKER.wake(); } } } }; } #[cfg(feature = "rt")] foreach_interrupt!( (RNG) => { irq!(RNG); }; (RNG_LPUART1) => { irq!(RNG_LPUART1); }; (AES_RNG_LPUART1) => { irq!(AES_RNG_LPUART1); }; (AES_RNG) => { irq!(AES_RNG); }; (HASH_RNG) => { irq!(HASH_RNG); }; );