//! HAL interface to the UARTE peripheral //! //! See product specification: //! //! - nrf52832: Section 35 //! - nrf52840: Section 6.34 use core::cmp::min; use core::mem; use core::ops::Deref; use core::pin::Pin; use core::sync::atomic::{compiler_fence, Ordering}; use core::task::{Context, Poll}; use embassy::interrupt::InterruptExt; use embassy::io::{AsyncBufRead, AsyncWrite, Result}; use embassy::util::WakerRegistration; use embedded_hal::digital::v2::OutputPin; use crate::hal::gpio::Port as GpioPort; use crate::hal::ppi::ConfigurablePpi; use crate::interrupt::{self, Interrupt}; use crate::pac; use crate::util::peripheral::{PeripheralMutex, PeripheralState}; use crate::util::ring_buffer::RingBuffer; use crate::{fmt::*, util::low_power_wait_until}; // Re-export SVD variants to allow user to directly set values pub use crate::hal::uarte::Pins; pub use pac::uarte0::{baudrate::BAUDRATE_A as Baudrate, config::PARITY_A as Parity}; #[derive(Copy, Clone, Debug, PartialEq)] enum RxState { Idle, Receiving, } #[derive(Copy, Clone, Debug, PartialEq)] enum TxState { Idle, Transmitting(usize), } struct State<'a, U: Instance, T: TimerInstance, P1: ConfigurablePpi, P2: ConfigurablePpi> { uarte: U, timer: T, ppi_channel_1: P1, ppi_channel_2: P2, rx: RingBuffer<'a>, rx_state: RxState, rx_waker: WakerRegistration, tx: RingBuffer<'a>, tx_state: TxState, tx_waker: WakerRegistration, } /// Interface to a UARTE instance /// /// This is a very basic interface that comes with the following limitations: /// - The UARTE instances share the same address space with instances of UART. /// You need to make sure that conflicting instances /// are disabled before using `Uarte`. See product specification: /// - nrf52832: Section 15.2 /// - nrf52840: Section 6.1.2 pub struct BufferedUarte< 'a, U: Instance, T: TimerInstance, P1: ConfigurablePpi, P2: ConfigurablePpi, > { inner: PeripheralMutex>, } #[cfg(any(feature = "52833", feature = "52840"))] fn port_bit(port: GpioPort) -> bool { match port { GpioPort::Port0 => false, GpioPort::Port1 => true, } } impl<'a, U: Instance, T: TimerInstance, P1: ConfigurablePpi, P2: ConfigurablePpi> BufferedUarte<'a, U, T, P1, P2> { pub fn new( uarte: U, timer: T, mut ppi_channel_1: P1, mut ppi_channel_2: P2, irq: U::Interrupt, rx_buffer: &'a mut [u8], tx_buffer: &'a mut [u8], mut pins: Pins, parity: Parity, baudrate: Baudrate, ) -> Self { // Select pins uarte.psel.rxd.write(|w| { let w = unsafe { w.pin().bits(pins.rxd.pin()) }; #[cfg(any(feature = "52833", feature = "52840"))] let w = w.port().bit(port_bit(pins.rxd.port())); w.connect().connected() }); pins.txd.set_high().unwrap(); uarte.psel.txd.write(|w| { let w = unsafe { w.pin().bits(pins.txd.pin()) }; #[cfg(any(feature = "52833", feature = "52840"))] let w = w.port().bit(port_bit(pins.txd.port())); w.connect().connected() }); // Optional pins uarte.psel.cts.write(|w| { if let Some(ref pin) = pins.cts { let w = unsafe { w.pin().bits(pin.pin()) }; #[cfg(any(feature = "52833", feature = "52840"))] let w = w.port().bit(port_bit(pin.port())); w.connect().connected() } else { w.connect().disconnected() } }); uarte.psel.rts.write(|w| { if let Some(ref pin) = pins.rts { let w = unsafe { w.pin().bits(pin.pin()) }; #[cfg(any(feature = "52833", feature = "52840"))] let w = w.port().bit(port_bit(pin.port())); w.connect().connected() } else { w.connect().disconnected() } }); // Enable UARTE instance uarte.enable.write(|w| w.enable().enabled()); // Enable interrupts uarte.intenset.write(|w| w.endrx().set().endtx().set()); // Configure let hardware_flow_control = pins.rts.is_some() && pins.cts.is_some(); uarte .config .write(|w| w.hwfc().bit(hardware_flow_control).parity().variant(parity)); // Configure frequency uarte.baudrate.write(|w| w.baudrate().variant(baudrate)); // Disable the irq, let the Registration enable it when everything is set up. irq.disable(); irq.pend(); // BAUDRATE register values are `baudrate * 2^32 / 16000000` // source: https://devzone.nordicsemi.com/f/nordic-q-a/391/uart-baudrate-register-values // // We want to stop RX if line is idle for 2 bytes worth of time // That is 20 bits (each byte is 1 start bit + 8 data bits + 1 stop bit) // This gives us the amount of 16M ticks for 20 bits. let timeout = 0x8000_0000 / (baudrate as u32 / 40); timer.tasks_stop.write(|w| unsafe { w.bits(1) }); timer.bitmode.write(|w| w.bitmode()._32bit()); timer.prescaler.write(|w| unsafe { w.prescaler().bits(0) }); timer.cc[0].write(|w| unsafe { w.bits(timeout) }); timer.mode.write(|w| w.mode().timer()); timer.shorts.write(|w| { w.compare0_clear().set_bit(); w.compare0_stop().set_bit(); w }); ppi_channel_1.set_event_endpoint(&uarte.events_rxdrdy); ppi_channel_1.set_task_endpoint(&timer.tasks_clear); ppi_channel_1.set_fork_task_endpoint(&timer.tasks_start); ppi_channel_1.enable(); ppi_channel_2.set_event_endpoint(&timer.events_compare[0]); ppi_channel_2.set_task_endpoint(&uarte.tasks_stoprx); ppi_channel_2.enable(); BufferedUarte { inner: PeripheralMutex::new( State { uarte, timer, ppi_channel_1, ppi_channel_2, rx: RingBuffer::new(rx_buffer), rx_state: RxState::Idle, rx_waker: WakerRegistration::new(), tx: RingBuffer::new(tx_buffer), tx_state: TxState::Idle, tx_waker: WakerRegistration::new(), }, irq, ), } } pub fn set_baudrate(self: Pin<&mut Self>, baudrate: Baudrate) { self.inner().with(|state, _irq| { let timeout = 0x8000_0000 / (baudrate as u32 / 40); state.timer.cc[0].write(|w| unsafe { w.bits(timeout) }); state.timer.tasks_clear.write(|w| unsafe { w.bits(1) }); state .uarte .baudrate .write(|w| w.baudrate().variant(baudrate)); }); } fn inner(self: Pin<&mut Self>) -> Pin<&mut PeripheralMutex>> { unsafe { Pin::new_unchecked(&mut self.get_unchecked_mut().inner) } } pub fn free(self: Pin<&mut Self>) -> (U, T, P1, P2, U::Interrupt) { let (mut state, irq) = self.inner().free(); state.stop(); ( state.uarte, state.timer, state.ppi_channel_1, state.ppi_channel_2, irq, ) } } impl<'a, U: Instance, T: TimerInstance, P1: ConfigurablePpi, P2: ConfigurablePpi> Drop for BufferedUarte<'a, U, T, P1, P2> { fn drop(&mut self) { let inner = unsafe { Pin::new_unchecked(&mut self.inner) }; if let Some((mut state, _irq)) = inner.try_free() { state.stop(); } } } impl<'a, U: Instance, T: TimerInstance, P1: ConfigurablePpi, P2: ConfigurablePpi> AsyncBufRead for BufferedUarte<'a, U, T, P1, P2> { fn poll_fill_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll> { self.inner().with(|state, _irq| { // Conservative compiler fence to prevent optimizations that do not // take in to account actions by DMA. The fence has been placed here, // before any DMA action has started compiler_fence(Ordering::SeqCst); trace!("poll_read"); // We have data ready in buffer? Return it. let buf = state.rx.pop_buf(); if !buf.is_empty() { trace!(" got {:?} {:?}", buf.as_ptr() as u32, buf.len()); let buf: &[u8] = buf; let buf: &[u8] = unsafe { mem::transmute(buf) }; return Poll::Ready(Ok(buf)); } trace!(" empty"); state.rx_waker.register(cx.waker()); Poll::>::Pending }) } fn consume(self: Pin<&mut Self>, amt: usize) { self.inner().with(|state, irq| { trace!("consume {:?}", amt); state.rx.pop(amt); irq.pend(); }) } } impl<'a, U: Instance, T: TimerInstance, P1: ConfigurablePpi, P2: ConfigurablePpi> AsyncWrite for BufferedUarte<'a, U, T, P1, P2> { fn poll_write(self: Pin<&mut Self>, cx: &mut Context<'_>, buf: &[u8]) -> Poll> { self.inner().with(|state, irq| { trace!("poll_write: {:?}", buf.len()); let tx_buf = state.tx.push_buf(); if tx_buf.is_empty() { trace!("poll_write: pending"); state.tx_waker.register(cx.waker()); return Poll::Pending; } let n = min(tx_buf.len(), buf.len()); tx_buf[..n].copy_from_slice(&buf[..n]); state.tx.push(n); trace!("poll_write: queued {:?}", n); // Conservative compiler fence to prevent optimizations that do not // take in to account actions by DMA. The fence has been placed here, // before any DMA action has started compiler_fence(Ordering::SeqCst); irq.pend(); Poll::Ready(Ok(n)) }) } } impl<'a, U: Instance, T: TimerInstance, P1: ConfigurablePpi, P2: ConfigurablePpi> State<'a, U, T, P1, P2> { fn stop(&mut self) { self.timer.tasks_stop.write(|w| unsafe { w.bits(1) }); if let RxState::Receiving = self.rx_state { self.uarte.tasks_stoprx.write(|w| unsafe { w.bits(1) }); } if let TxState::Transmitting(_) = self.tx_state { self.uarte.tasks_stoptx.write(|w| unsafe { w.bits(1) }); } if let RxState::Receiving = self.rx_state { low_power_wait_until(|| self.uarte.events_endrx.read().bits() == 1); } if let TxState::Transmitting(_) = self.tx_state { low_power_wait_until(|| self.uarte.events_endtx.read().bits() == 1); } } } impl<'a, U: Instance, T: TimerInstance, P1: ConfigurablePpi, P2: ConfigurablePpi> PeripheralState for State<'a, U, T, P1, P2> { type Interrupt = U::Interrupt; fn on_interrupt(&mut self) { trace!("irq: start"); loop { match self.rx_state { RxState::Idle => { trace!(" irq_rx: in state idle"); let buf = self.rx.push_buf(); if !buf.is_empty() { trace!(" irq_rx: starting {:?}", buf.len()); self.rx_state = RxState::Receiving; // Set up the DMA read self.uarte.rxd.ptr.write(|w| // The PTR field is a full 32 bits wide and accepts the full range // of values. unsafe { w.ptr().bits(buf.as_ptr() as u32) }); self.uarte.rxd.maxcnt.write(|w| // We're giving it the length of the buffer, so no danger of // accessing invalid memory. We have verified that the length of the // buffer fits in an `u8`, so the cast to `u8` is also fine. // // The MAXCNT field is at least 8 bits wide and accepts the full // range of values. unsafe { w.maxcnt().bits(buf.len() as _) }); trace!(" irq_rx: buf {:?} {:?}", buf.as_ptr() as u32, buf.len()); // Start UARTE Receive transaction self.uarte.tasks_startrx.write(|w| // `1` is a valid value to write to task registers. unsafe { w.bits(1) }); } break; } RxState::Receiving => { trace!(" irq_rx: in state receiving"); if self.uarte.events_endrx.read().bits() != 0 { self.timer.tasks_stop.write(|w| unsafe { w.bits(1) }); let n: usize = self.uarte.rxd.amount.read().amount().bits() as usize; trace!(" irq_rx: endrx {:?}", n); self.rx.push(n); self.uarte.events_endrx.reset(); self.rx_waker.wake(); self.rx_state = RxState::Idle; } else { break; } } } } loop { match self.tx_state { TxState::Idle => { trace!(" irq_tx: in state Idle"); let buf = self.tx.pop_buf(); if !buf.is_empty() { trace!(" irq_tx: starting {:?}", buf.len()); self.tx_state = TxState::Transmitting(buf.len()); // Set up the DMA write self.uarte.txd.ptr.write(|w| // The PTR field is a full 32 bits wide and accepts the full range // of values. unsafe { w.ptr().bits(buf.as_ptr() as u32) }); self.uarte.txd.maxcnt.write(|w| // We're giving it the length of the buffer, so no danger of // accessing invalid memory. We have verified that the length of the // buffer fits in an `u8`, so the cast to `u8` is also fine. // // The MAXCNT field is 8 bits wide and accepts the full range of // values. unsafe { w.maxcnt().bits(buf.len() as _) }); // Start UARTE Transmit transaction self.uarte.tasks_starttx.write(|w| // `1` is a valid value to write to task registers. unsafe { w.bits(1) }); } break; } TxState::Transmitting(n) => { trace!(" irq_tx: in state Transmitting"); if self.uarte.events_endtx.read().bits() != 0 { self.uarte.events_endtx.reset(); trace!(" irq_tx: endtx {:?}", n); self.tx.pop(n); self.tx_waker.wake(); self.tx_state = TxState::Idle; } else { break; } } } } trace!("irq: end"); } } mod sealed { pub trait Instance {} impl Instance for crate::pac::UARTE0 {} #[cfg(any(feature = "52833", feature = "52840", feature = "9160"))] impl Instance for crate::pac::UARTE1 {} pub trait TimerInstance {} impl TimerInstance for crate::pac::TIMER0 {} impl TimerInstance for crate::pac::TIMER1 {} impl TimerInstance for crate::pac::TIMER2 {} } pub trait Instance: Deref + sealed::Instance { type Interrupt: Interrupt; } impl Instance for pac::UARTE0 { type Interrupt = interrupt::UARTE0_UART0; } #[cfg(any(feature = "52833", feature = "52840", feature = "9160"))] impl Instance for pac::UARTE1 { type Interrupt = interrupt::UARTE1; } pub trait TimerInstance: Deref + sealed::TimerInstance { } impl TimerInstance for crate::pac::TIMER0 {} impl TimerInstance for crate::pac::TIMER1 {} impl TimerInstance for crate::pac::TIMER2 {}