#![macro_use] //! Async UART use core::future::Future; use core::marker::PhantomData; use core::sync::atomic::{compiler_fence, Ordering}; use core::task::Poll; use embassy::interrupt::InterruptExt; use embassy::traits::uart::{Error, Read, ReadUntilIdle, Write}; use embassy::util::{AtomicWaker, OnDrop, Unborrow}; use embassy_extras::unborrow; use futures::future::poll_fn; use crate::chip::EASY_DMA_SIZE; use crate::fmt::{assert, panic, *}; use crate::gpio::sealed::Pin as _; use crate::gpio::{OptionalPin as GpioOptionalPin, Pin as GpioPin}; use crate::interrupt; use crate::interrupt::Interrupt; use crate::pac; use crate::peripherals; use crate::ppi::{AnyConfigurableChannel, ConfigurableChannel, Event, Ppi, Task}; use crate::timer::Instance as TimerInstance; // Re-export SVD variants to allow user to directly set values. pub use pac::uarte0::{baudrate::BAUDRATE_A as Baudrate, config::PARITY_A as Parity}; #[non_exhaustive] pub struct Config { pub parity: Parity, pub baudrate: Baudrate, } impl Default for Config { fn default() -> Self { Self { parity: Parity::EXCLUDED, baudrate: Baudrate::BAUD115200, } } } /// Interface to the UARTE peripheral pub struct Uarte<'d, T: Instance> { peri: T, phantom: PhantomData<&'d mut T>, } impl<'d, T: Instance> Uarte<'d, T> { /// Creates the interface to a UARTE instance. /// Sets the baud rate, parity and assigns the pins to the UARTE peripheral. /// /// # Safety /// /// The returned API is safe unless you use `mem::forget` (or similar safe mechanisms) /// on stack allocated buffers which which have been passed to [`send()`](Uarte::send) /// or [`receive`](Uarte::receive). #[allow(unused_unsafe)] pub unsafe fn new( uarte: impl Unborrow + 'd, irq: impl Unborrow + 'd, rxd: impl Unborrow + 'd, txd: impl Unborrow + 'd, cts: impl Unborrow + 'd, rts: impl Unborrow + 'd, config: Config, ) -> Self { unborrow!(uarte, irq, rxd, txd, cts, rts); let r = T::regs(); assert!(r.enable.read().enable().is_disabled()); rxd.conf().write(|w| w.input().connect().drive().h0h1()); r.psel.rxd.write(|w| unsafe { w.bits(rxd.psel_bits()) }); txd.set_high(); txd.conf().write(|w| w.dir().output().drive().h0h1()); r.psel.txd.write(|w| unsafe { w.bits(txd.psel_bits()) }); if let Some(pin) = rts.pin_mut() { pin.set_high(); pin.conf().write(|w| w.dir().output().drive().h0h1()); } r.psel.cts.write(|w| unsafe { w.bits(cts.psel_bits()) }); if let Some(pin) = cts.pin_mut() { pin.conf().write(|w| w.input().connect().drive().h0h1()); } r.psel.rts.write(|w| unsafe { w.bits(rts.psel_bits()) }); // Configure let hardware_flow_control = match (rts.pin().is_some(), cts.pin().is_some()) { (false, false) => false, (true, true) => true, _ => panic!("RTS and CTS pins must be either both set or none set."), }; r.config.write(|w| { w.hwfc().bit(hardware_flow_control); w.parity().variant(config.parity); w }); r.baudrate.write(|w| w.baudrate().variant(config.baudrate)); // Disable all interrupts r.intenclr.write(|w| unsafe { w.bits(0xFFFF_FFFF) }); // Reset rxstarted, txstarted. These are used by drop to know whether a transfer was // stopped midway or not. r.events_rxstarted.reset(); r.events_txstarted.reset(); irq.set_handler(Self::on_interrupt); irq.unpend(); irq.enable(); // Enable r.enable.write(|w| w.enable().enabled()); Self { peri: uarte, phantom: PhantomData, } } fn on_interrupt(_: *mut ()) { let r = T::regs(); let s = T::state(); if r.events_endrx.read().bits() != 0 { s.endrx_waker.wake(); r.intenclr.write(|w| w.endrx().clear()); } if r.events_endtx.read().bits() != 0 { s.endtx_waker.wake(); r.intenclr.write(|w| w.endtx().clear()); } if r.events_rxto.read().bits() != 0 { r.intenclr.write(|w| w.rxto().clear()); } if r.events_txstopped.read().bits() != 0 { r.intenclr.write(|w| w.txstopped().clear()); } } } impl<'a, T: Instance> Drop for Uarte<'a, T> { fn drop(&mut self) { info!("uarte drop"); let r = T::regs(); let did_stoprx = r.events_rxstarted.read().bits() != 0; let did_stoptx = r.events_txstarted.read().bits() != 0; info!("did_stoprx {} did_stoptx {}", did_stoprx, did_stoptx); // Wait for rxto or txstopped, if needed. r.intenset.write(|w| w.rxto().set().txstopped().set()); while (did_stoprx && r.events_rxto.read().bits() == 0) || (did_stoptx && r.events_txstopped.read().bits() == 0) { info!("uarte drop: wfe"); cortex_m::asm::wfe(); } cortex_m::asm::sev(); // Finally we can disable! r.enable.write(|w| w.enable().disabled()); info!("uarte drop: done"); // TODO: disable pins } } impl<'d, T: Instance> Read for Uarte<'d, T> { #[rustfmt::skip] type ReadFuture<'a> where Self: 'a = impl Future> + 'a; fn read<'a>(&'a mut self, rx_buffer: &'a mut [u8]) -> Self::ReadFuture<'a> { async move { let ptr = rx_buffer.as_ptr(); let len = rx_buffer.len(); assert!(len <= EASY_DMA_SIZE); let r = T::regs(); let s = T::state(); let drop = OnDrop::new(move || { info!("read drop: stopping"); r.intenclr.write(|w| w.endrx().clear()); r.events_rxto.reset(); r.tasks_stoprx.write(|w| unsafe { w.bits(1) }); while r.events_endrx.read().bits() == 0 {} info!("read drop: stopped"); }); r.rxd.ptr.write(|w| unsafe { w.ptr().bits(ptr as u32) }); r.rxd.maxcnt.write(|w| unsafe { w.maxcnt().bits(len as _) }); r.events_endrx.reset(); r.intenset.write(|w| w.endrx().set()); compiler_fence(Ordering::SeqCst); trace!("startrx"); r.tasks_startrx.write(|w| unsafe { w.bits(1) }); poll_fn(|cx| { s.endrx_waker.register(cx.waker()); if r.events_endrx.read().bits() != 0 { return Poll::Ready(()); } Poll::Pending }) .await; compiler_fence(Ordering::SeqCst); r.events_rxstarted.reset(); drop.defuse(); Ok(()) } } } impl<'d, T: Instance> Write for Uarte<'d, T> { #[rustfmt::skip] type WriteFuture<'a> where Self: 'a = impl Future> + 'a; fn write<'a>(&'a mut self, tx_buffer: &'a [u8]) -> Self::WriteFuture<'a> { async move { let ptr = tx_buffer.as_ptr(); let len = tx_buffer.len(); assert!(len <= EASY_DMA_SIZE); // TODO: panic if buffer is not in SRAM let r = T::regs(); let s = T::state(); let drop = OnDrop::new(move || { info!("write drop: stopping"); r.intenclr.write(|w| w.endtx().clear()); r.events_txstopped.reset(); r.tasks_stoptx.write(|w| unsafe { w.bits(1) }); // TX is stopped almost instantly, spinning is fine. while r.events_endtx.read().bits() == 0 {} info!("write drop: stopped"); }); r.txd.ptr.write(|w| unsafe { w.ptr().bits(ptr as u32) }); r.txd.maxcnt.write(|w| unsafe { w.maxcnt().bits(len as _) }); r.events_endtx.reset(); r.intenset.write(|w| w.endtx().set()); compiler_fence(Ordering::SeqCst); trace!("starttx"); r.tasks_starttx.write(|w| unsafe { w.bits(1) }); poll_fn(|cx| { s.endtx_waker.register(cx.waker()); if r.events_endtx.read().bits() != 0 { return Poll::Ready(()); } Poll::Pending }) .await; compiler_fence(Ordering::SeqCst); r.events_txstarted.reset(); drop.defuse(); Ok(()) } } } /// Interface to an UARTE peripheral that uses an additional timer and two PPI channels, /// allowing it to implement the ReadUntilIdle trait. pub struct UarteWithIdle<'d, U: Instance, T: TimerInstance> { uarte: Uarte<'d, U>, timer: T, ppi_ch1: Ppi<'d, AnyConfigurableChannel>, _ppi_ch2: Ppi<'d, AnyConfigurableChannel>, } impl<'d, U: Instance, T: TimerInstance> UarteWithIdle<'d, U, T> { /// Creates the interface to a UARTE instance. /// Sets the baud rate, parity and assigns the pins to the UARTE peripheral. /// /// # Safety /// /// The returned API is safe unless you use `mem::forget` (or similar safe mechanisms) /// on stack allocated buffers which which have been passed to [`send()`](Uarte::send) /// or [`receive`](Uarte::receive). #[allow(unused_unsafe)] pub unsafe fn new( uarte: impl Unborrow + 'd, timer: impl Unborrow + 'd, ppi_ch1: impl Unborrow + 'd, ppi_ch2: impl Unborrow + 'd, irq: impl Unborrow + 'd, rxd: impl Unborrow + 'd, txd: impl Unborrow + 'd, cts: impl Unborrow + 'd, rts: impl Unborrow + 'd, config: Config, ) -> Self { let baudrate = config.baudrate; let uarte = Uarte::new(uarte, irq, rxd, txd, cts, rts, config); unborrow!(timer, ppi_ch1, ppi_ch2); let r = U::regs(); let rt = timer.regs(); // BAUDRATE register values are `baudrate * 2^32 / 16000000` // source: https://devzone.nordicsemi.com/f/nordic-q-a/391/uart-baudrate-register-values // // We want to stop RX if line is idle for 2 bytes worth of time // That is 20 bits (each byte is 1 start bit + 8 data bits + 1 stop bit) // This gives us the amount of 16M ticks for 20 bits. let timeout = 0x8000_0000 / (baudrate as u32 / 40); rt.tasks_stop.write(|w| unsafe { w.bits(1) }); rt.bitmode.write(|w| w.bitmode()._32bit()); rt.prescaler.write(|w| unsafe { w.prescaler().bits(0) }); rt.cc[0].write(|w| unsafe { w.bits(timeout) }); rt.mode.write(|w| w.mode().timer()); rt.shorts.write(|w| { w.compare0_clear().set_bit(); w.compare0_stop().set_bit(); w }); let mut ppi_ch1 = Ppi::new(ppi_ch1.degrade_configurable()); ppi_ch1.set_event(Event::from_reg(&r.events_rxdrdy)); ppi_ch1.set_task(Task::from_reg(&rt.tasks_clear)); ppi_ch1.set_fork_task(Task::from_reg(&rt.tasks_start)); ppi_ch1.enable(); let mut ppi_ch2 = Ppi::new(ppi_ch2.degrade_configurable()); ppi_ch2.set_event(Event::from_reg(&rt.events_compare[0])); ppi_ch2.set_task(Task::from_reg(&r.tasks_stoprx)); ppi_ch2.enable(); Self { uarte, timer, ppi_ch1: ppi_ch1, _ppi_ch2: ppi_ch2, } } } impl<'d, U: Instance, T: TimerInstance> ReadUntilIdle for UarteWithIdle<'d, U, T> { #[rustfmt::skip] type ReadUntilIdleFuture<'a> where Self: 'a = impl Future> + 'a; fn read_until_idle<'a>(&'a mut self, rx_buffer: &'a mut [u8]) -> Self::ReadUntilIdleFuture<'a> { async move { let ptr = rx_buffer.as_ptr(); let len = rx_buffer.len(); assert!(len <= EASY_DMA_SIZE); let r = U::regs(); let s = U::state(); let rt = self.timer.regs(); let drop = OnDrop::new(move || { info!("read drop: stopping"); rt.tasks_stop.write(|w| unsafe { w.bits(1) }); r.intenclr.write(|w| w.endrx().clear()); r.events_rxto.reset(); r.tasks_stoprx.write(|w| unsafe { w.bits(1) }); while r.events_endrx.read().bits() == 0 {} info!("read drop: stopped"); }); r.rxd.ptr.write(|w| unsafe { w.ptr().bits(ptr as u32) }); r.rxd.maxcnt.write(|w| unsafe { w.maxcnt().bits(len as _) }); r.events_endrx.reset(); r.intenset.write(|w| w.endrx().set()); compiler_fence(Ordering::SeqCst); trace!("startrx"); r.tasks_startrx.write(|w| unsafe { w.bits(1) }); poll_fn(|cx| { s.endrx_waker.register(cx.waker()); if r.events_endrx.read().bits() != 0 { return Poll::Ready(()); } Poll::Pending }) .await; compiler_fence(Ordering::SeqCst); let n = r.rxd.amount.read().amount().bits() as usize; // Stop timer rt.tasks_stop.write(|w| unsafe { w.bits(1) }); r.events_rxstarted.reset(); drop.defuse(); Ok(n) } } } impl<'d, U: Instance, T: TimerInstance> Read for UarteWithIdle<'d, U, T> { #[rustfmt::skip] type ReadFuture<'a> where Self: 'a = impl Future> + 'a; fn read<'a>(&'a mut self, rx_buffer: &'a mut [u8]) -> Self::ReadFuture<'a> { async move { self.ppi_ch1.disable(); let result = self.uarte.read(rx_buffer).await; self.ppi_ch1.enable(); result } } } impl<'d, U: Instance, T: TimerInstance> Write for UarteWithIdle<'d, U, T> { #[rustfmt::skip] type WriteFuture<'a> where Self: 'a = impl Future> + 'a; fn write<'a>(&'a mut self, tx_buffer: &'a [u8]) -> Self::WriteFuture<'a> { self.uarte.write(tx_buffer) } } pub(crate) mod sealed { use super::*; pub struct State { pub endrx_waker: AtomicWaker, pub endtx_waker: AtomicWaker, } impl State { pub const fn new() -> Self { Self { endrx_waker: AtomicWaker::new(), endtx_waker: AtomicWaker::new(), } } } pub trait Instance { fn regs() -> &'static pac::uarte0::RegisterBlock; fn state() -> &'static State; } } pub trait Instance: sealed::Instance + 'static { type Interrupt: Interrupt; } macro_rules! impl_uarte { ($type:ident, $pac_type:ident, $irq:ident) => { impl crate::uarte::sealed::Instance for peripherals::$type { fn regs() -> &'static pac::uarte0::RegisterBlock { unsafe { &*pac::$pac_type::ptr() } } fn state() -> &'static crate::uarte::sealed::State { static STATE: crate::uarte::sealed::State = crate::uarte::sealed::State::new(); &STATE } } impl crate::uarte::Instance for peripherals::$type { type Interrupt = crate::interrupt::$irq; } }; }