use crate::adc::{AdcPin, Instance}; use core::marker::PhantomData; use embassy::util::Unborrow; use embassy_hal_common::unborrow; use embedded_hal_02::blocking::delay::DelayUs; pub const VDDA_CALIB_MV: u32 = 3000; /// Sadly we cannot use `RccPeripheral::enable` since devices are quite inconsistent ADC clock /// configuration. fn enable() { critical_section::with(|_| unsafe { #[cfg(stm32h7)] crate::pac::RCC.apb2enr().modify(|w| w.set_adcen(true)); #[cfg(stm32g0)] crate::pac::RCC.apbenr2().modify(|w| w.set_adcen(true)); #[cfg(any(stm32l4, stm32wb))] crate::pac::RCC.ahb2enr().modify(|w| w.set_adcen(true)); }); } pub enum Resolution { TwelveBit, TenBit, EightBit, SixBit, } impl Default for Resolution { fn default() -> Self { Self::TwelveBit } } impl Resolution { fn res(&self) -> crate::pac::adc::vals::Res { match self { Resolution::TwelveBit => crate::pac::adc::vals::Res::TWELVEBIT, Resolution::TenBit => crate::pac::adc::vals::Res::TENBIT, Resolution::EightBit => crate::pac::adc::vals::Res::EIGHTBIT, Resolution::SixBit => crate::pac::adc::vals::Res::SIXBIT, } } fn to_max_count(&self) -> u32 { match self { Resolution::TwelveBit => (1 << 12) - 1, Resolution::TenBit => (1 << 10) - 1, Resolution::EightBit => (1 << 8) - 1, Resolution::SixBit => (1 << 6) - 1, } } } pub struct Vref; impl AdcPin for Vref {} impl super::sealed::AdcPin for Vref { fn channel(&self) -> u8 { #[cfg(not(stm32g0))] let val = 0; #[cfg(stm32g0)] let val = 13; val } } pub struct Temperature; impl AdcPin for Temperature {} impl super::sealed::AdcPin for Temperature { fn channel(&self) -> u8 { #[cfg(not(stm32g0))] let val = 17; #[cfg(stm32g0)] let val = 12; val } } pub struct Vbat; impl AdcPin for Vbat {} impl super::sealed::AdcPin for Vbat { fn channel(&self) -> u8 { #[cfg(not(stm32g0))] let val = 18; #[cfg(stm32g0)] let val = 14; val } } #[cfg(not(adc_g0))] mod sample_time { /// ADC sample time /// /// The default setting is 2.5 ADC clock cycles. #[derive(Clone, Copy, Debug, Eq, PartialEq, Ord, PartialOrd)] pub enum SampleTime { /// 2.5 ADC clock cycles Cycles2_5 = 0b000, /// 6.5 ADC clock cycles Cycles6_5 = 0b001, /// 12.5 ADC clock cycles Cycles12_5 = 0b010, /// 24.5 ADC clock cycles Cycles24_5 = 0b011, /// 47.5 ADC clock cycles Cycles47_5 = 0b100, /// 92.5 ADC clock cycles Cycles92_5 = 0b101, /// 247.5 ADC clock cycles Cycles247_5 = 0b110, /// 640.5 ADC clock cycles Cycles640_5 = 0b111, } impl SampleTime { pub(crate) fn sample_time(&self) -> crate::pac::adc::vals::SampleTime { match self { SampleTime::Cycles2_5 => crate::pac::adc::vals::SampleTime::CYCLES2_5, SampleTime::Cycles6_5 => crate::pac::adc::vals::SampleTime::CYCLES6_5, SampleTime::Cycles12_5 => crate::pac::adc::vals::SampleTime::CYCLES12_5, SampleTime::Cycles24_5 => crate::pac::adc::vals::SampleTime::CYCLES24_5, SampleTime::Cycles47_5 => crate::pac::adc::vals::SampleTime::CYCLES47_5, SampleTime::Cycles92_5 => crate::pac::adc::vals::SampleTime::CYCLES92_5, SampleTime::Cycles247_5 => crate::pac::adc::vals::SampleTime::CYCLES247_5, SampleTime::Cycles640_5 => crate::pac::adc::vals::SampleTime::CYCLES640_5, } } } impl Default for SampleTime { fn default() -> Self { Self::Cycles2_5 } } } #[cfg(adc_g0)] mod sample_time { /// ADC sample time /// /// The default setting is 1.5 ADC clock cycles. #[derive(Clone, Copy, Debug, Eq, PartialEq, Ord, PartialOrd)] pub enum SampleTime { /// 1.5 ADC clock cycles Cycles1_5 = 0b000, /// 3.5 ADC clock cycles Cycles3_5 = 0b001, /// 7.5 ADC clock cycles Cycles7_5 = 0b010, /// 12.5 ADC clock cycles Cycles12_5 = 0b011, /// 19.5 ADC clock cycles Cycles19_5 = 0b100, /// 39.5 ADC clock cycles Cycles39_5 = 0b101, /// 79.5 ADC clock cycles Cycles79_5 = 0b110, /// 160.5 ADC clock cycles Cycles160_5 = 0b111, } impl SampleTime { pub(crate) fn sample_time(&self) -> crate::pac::adc::vals::SampleTime { match self { SampleTime::Cycles1_5 => crate::pac::adc::vals::SampleTime::CYCLES1_5, SampleTime::Cycles3_5 => crate::pac::adc::vals::SampleTime::CYCLES3_5, SampleTime::Cycles7_5 => crate::pac::adc::vals::SampleTime::CYCLES7_5, SampleTime::Cycles12_5 => crate::pac::adc::vals::SampleTime::CYCLES12_5, SampleTime::Cycles19_5 => crate::pac::adc::vals::SampleTime::CYCLES19_5, SampleTime::Cycles39_5 => crate::pac::adc::vals::SampleTime::CYCLES39_5, SampleTime::Cycles79_5 => crate::pac::adc::vals::SampleTime::CYCLES79_5, SampleTime::Cycles160_5 => crate::pac::adc::vals::SampleTime::CYCLES160_5, } } } impl Default for SampleTime { fn default() -> Self { Self::Cycles1_5 } } } pub use sample_time::SampleTime; pub struct Adc<'d, T: Instance> { sample_time: SampleTime, calibrated_vdda: u32, resolution: Resolution, phantom: PhantomData<&'d mut T>, } impl<'d, T: Instance> Adc<'d, T> { pub fn new(_peri: impl Unborrow + 'd, delay: &mut impl DelayUs) -> Self { unborrow!(_peri); enable(); unsafe { T::regs().cr().modify(|reg| { #[cfg(not(adc_g0))] reg.set_deeppwd(false); reg.set_advregen(true); }); #[cfg(adc_g0)] T::regs().cfgr1().modify(|reg| { reg.set_chselrmod(true); }); } delay.delay_us(20); unsafe { T::regs().cr().modify(|reg| { reg.set_adcal(true); }); while T::regs().cr().read().adcal() { // spin } } delay.delay_us(1); Self { sample_time: Default::default(), resolution: Resolution::default(), calibrated_vdda: VDDA_CALIB_MV, phantom: PhantomData, } } pub fn enable_vref(&self, delay: &mut impl DelayUs) -> Vref { unsafe { T::common_regs().ccr().modify(|reg| { reg.set_vrefen(true); }); } // "Table 24. Embedded internal voltage reference" states that it takes a maximum of 12 us // to stabilize the internal voltage reference, we wait a little more. // TODO: delay 15us //cortex_m::asm::delay(20_000_000); delay.delay_us(15); Vref {} } pub fn enable_temperature(&self) -> Temperature { unsafe { T::common_regs().ccr().modify(|reg| { reg.set_ch17sel(true); }); } Temperature {} } pub fn enable_vbat(&self) -> Vbat { unsafe { T::common_regs().ccr().modify(|reg| { reg.set_ch18sel(true); }); } Vbat {} } /// Calculates the system VDDA by sampling the internal VREF channel and comparing /// the result with the value stored at the factory. If the chip's VDDA is not stable, run /// this before each ADC conversion. #[cfg(not(stm32g0))] // TODO is this supposed to be public? #[allow(unused)] // TODO is this supposed to be public? fn calibrate(&mut self, vref: &mut Vref) { let vref_cal = unsafe { crate::pac::VREFINTCAL.data().read().value() }; let old_sample_time = self.sample_time; // "Table 24. Embedded internal voltage reference" states that the sample time needs to be // at a minimum 4 us. With 640.5 ADC cycles we have a minimum of 8 us at 80 MHz, leaving // some headroom. self.sample_time = SampleTime::Cycles640_5; // This can't actually fail, it's just in a result to satisfy hal trait let vref_samp = self.read(vref); self.sample_time = old_sample_time; self.calibrated_vdda = (VDDA_CALIB_MV * u32::from(vref_cal)) / u32::from(vref_samp); } pub fn set_sample_time(&mut self, sample_time: SampleTime) { self.sample_time = sample_time; } pub fn set_resolution(&mut self, resolution: Resolution) { self.resolution = resolution; } /// Convert a measurement to millivolts pub fn to_millivolts(&self, sample: u16) -> u16 { ((u32::from(sample) * self.calibrated_vdda) / self.resolution.to_max_count()) as u16 } /* /// Convert a raw sample from the `Temperature` to deg C pub fn to_degrees_centigrade(sample: u16) -> f32 { (130.0 - 30.0) / (VtempCal130::get().read() as f32 - VtempCal30::get().read() as f32) * (sample as f32 - VtempCal30::get().read() as f32) + 30.0 } */ /// Perform a single conversion. fn convert(&mut self) -> u16 { unsafe { T::regs().isr().modify(|reg| { reg.set_eos(true); reg.set_eoc(true); }); // Start conversion T::regs().cr().modify(|reg| { reg.set_adstart(true); }); while !T::regs().isr().read().eos() { // spin } T::regs().dr().read().0 as u16 } } pub fn read(&mut self, pin: &mut impl AdcPin) -> u16 { unsafe { // Make sure bits are off while T::regs().cr().read().addis() { // spin } // Enable ADC T::regs().isr().modify(|reg| { reg.set_adrdy(true); }); T::regs().cr().modify(|reg| { reg.set_aden(true); }); while !T::regs().isr().read().adrdy() { // spin } // Configure ADC #[cfg(not(stm32g0))] T::regs() .cfgr() .modify(|reg| reg.set_res(self.resolution.res())); #[cfg(stm32g0)] T::regs() .cfgr1() .modify(|reg| reg.set_res(self.resolution.res())); // Configure channel Self::set_channel_sample_time(pin.channel(), self.sample_time); // Select channel #[cfg(not(stm32g0))] T::regs().sqr1().write(|reg| reg.set_sq(0, pin.channel())); #[cfg(stm32g0)] T::regs() .chselr() .write(|reg| reg.set_chsel(pin.channel() as u32)); // Some models are affected by an erratum: // If we perform conversions slower than 1 kHz, the first read ADC value can be // corrupted, so we discard it and measure again. // // STM32L471xx: Section 2.7.3 // STM32G4: Section 2.7.3 #[cfg(any(rcc_l4, rcc_g4))] let _ = self.convert(); let val = self.convert(); T::regs().cr().modify(|reg| reg.set_addis(true)); val } } #[cfg(stm32g0)] unsafe fn set_channel_sample_time(_ch: u8, sample_time: SampleTime) { T::regs() .smpr() .modify(|reg| reg.set_smp1(sample_time.sample_time())); } #[cfg(not(stm32g0))] unsafe fn set_channel_sample_time(ch: u8, sample_time: SampleTime) { if ch <= 9 { T::regs() .smpr1() .modify(|reg| reg.set_smp(ch as _, sample_time.sample_time())); } else { T::regs() .smpr2() .modify(|reg| reg.set_smp((ch - 10) as _, sample_time.sample_time())); } } }