//! Quad Serial Peripheral Interface (QSPI) flash driver. #![macro_use] use core::future::poll_fn; use core::ptr; use core::task::Poll; use embassy_hal_common::drop::OnDrop; use embassy_hal_common::{into_ref, PeripheralRef}; use embedded_storage::nor_flash::{ErrorType, NorFlash, NorFlashError, NorFlashErrorKind, ReadNorFlash}; use crate::gpio::{self, Pin as GpioPin}; use crate::interrupt::{Interrupt, InterruptExt}; pub use crate::pac::qspi::ifconfig0::{ ADDRMODE_A as AddressMode, PPSIZE_A as WritePageSize, READOC_A as ReadOpcode, WRITEOC_A as WriteOpcode, }; pub use crate::pac::qspi::ifconfig1::SPIMODE_A as SpiMode; use crate::{pac, Peripheral}; /// Deep power-down config. pub struct DeepPowerDownConfig { /// Time required for entering DPM, in units of 16us pub enter_time: u16, /// Time required for exiting DPM, in units of 16us pub exit_time: u16, } /// QSPI bus frequency. pub enum Frequency { /// 32 Mhz M32 = 0, /// 16 Mhz M16 = 1, /// 10.7 Mhz M10_7 = 2, /// 8 Mhz M8 = 3, /// 6.4 Mhz M6_4 = 4, /// 5.3 Mhz M5_3 = 5, /// 4.6 Mhz M4_6 = 6, /// 4 Mhz M4 = 7, /// 3.6 Mhz M3_6 = 8, /// 3.2 Mhz M3_2 = 9, /// 2.9 Mhz M2_9 = 10, /// 2.7 Mhz M2_7 = 11, /// 2.5 Mhz M2_5 = 12, /// 2.3 Mhz M2_3 = 13, /// 2.1 Mhz M2_1 = 14, /// 2 Mhz M2 = 15, } /// QSPI config. #[non_exhaustive] pub struct Config { /// XIP offset. pub xip_offset: u32, /// Opcode used for read operations. pub read_opcode: ReadOpcode, /// Opcode used for write operations. pub write_opcode: WriteOpcode, /// Page size for write operations. pub write_page_size: WritePageSize, /// Configuration for deep power down. If None, deep power down is disabled. pub deep_power_down: Option, /// QSPI bus frequency. pub frequency: Frequency, /// Value is specified in number of 16 MHz periods (62.5 ns) pub sck_delay: u8, /// Whether data is captured on the clock rising edge and data is output on a falling edge (MODE0) or vice-versa (MODE3) pub spi_mode: SpiMode, /// Addressing mode (24-bit or 32-bit) pub address_mode: AddressMode, /// Flash memory capacity in bytes. This is the value reported by the `embedded-storage` traits. pub capacity: u32, } impl Default for Config { fn default() -> Self { Self { read_opcode: ReadOpcode::READ4IO, write_opcode: WriteOpcode::PP4IO, xip_offset: 0, write_page_size: WritePageSize::_256BYTES, deep_power_down: None, frequency: Frequency::M8, sck_delay: 80, spi_mode: SpiMode::MODE0, address_mode: AddressMode::_24BIT, capacity: 0, } } } /// Error #[derive(Debug, Copy, Clone, Eq, PartialEq)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] #[non_exhaustive] pub enum Error { /// Operation address was out of bounds. OutOfBounds, // TODO add "not in data memory" error and check for it } /// QSPI flash driver. pub struct Qspi<'d, T: Instance> { irq: PeripheralRef<'d, T::Interrupt>, dpm_enabled: bool, capacity: u32, } impl<'d, T: Instance> Qspi<'d, T> { /// Create a new QSPI driver. pub fn new( _qspi: impl Peripheral

+ 'd, irq: impl Peripheral

+ 'd, sck: impl Peripheral

+ 'd, csn: impl Peripheral

+ 'd, io0: impl Peripheral

+ 'd, io1: impl Peripheral

+ 'd, io2: impl Peripheral

+ 'd, io3: impl Peripheral

+ 'd, config: Config, ) -> Self { into_ref!(irq, sck, csn, io0, io1, io2, io3); let r = T::regs(); macro_rules! config_pin { ($pin:ident) => { $pin.set_high(); $pin.conf().write(|w| { w.dir().output(); w.drive().h0h1(); #[cfg(feature = "_nrf5340-s")] w.mcusel().peripheral(); w }); r.psel.$pin.write(|w| unsafe { w.bits($pin.psel_bits()) }); }; } config_pin!(sck); config_pin!(csn); config_pin!(io0); config_pin!(io1); config_pin!(io2); config_pin!(io3); r.ifconfig0.write(|w| { w.addrmode().variant(config.address_mode); w.dpmenable().bit(config.deep_power_down.is_some()); w.ppsize().variant(config.write_page_size); w.readoc().variant(config.read_opcode); w.writeoc().variant(config.write_opcode); w }); if let Some(dpd) = &config.deep_power_down { r.dpmdur.write(|w| unsafe { w.enter().bits(dpd.enter_time); w.exit().bits(dpd.exit_time); w }) } r.ifconfig1.write(|w| unsafe { w.sckdelay().bits(config.sck_delay); w.dpmen().exit(); w.spimode().variant(config.spi_mode); w.sckfreq().bits(config.frequency as u8); w }); r.xipoffset.write(|w| unsafe { w.xipoffset().bits(config.xip_offset); w }); irq.set_handler(Self::on_interrupt); irq.unpend(); irq.enable(); // Enable it r.enable.write(|w| w.enable().enabled()); let res = Self { dpm_enabled: config.deep_power_down.is_some(), irq, capacity: config.capacity, }; r.events_ready.reset(); r.intenset.write(|w| w.ready().set()); r.tasks_activate.write(|w| w.tasks_activate().bit(true)); Self::blocking_wait_ready(); res } fn on_interrupt(_: *mut ()) { let r = T::regs(); let s = T::state(); if r.events_ready.read().bits() != 0 { s.ready_waker.wake(); r.intenclr.write(|w| w.ready().clear()); } } /// Do a custom QSPI instruction. pub async fn custom_instruction(&mut self, opcode: u8, req: &[u8], resp: &mut [u8]) -> Result<(), Error> { let ondrop = OnDrop::new(Self::blocking_wait_ready); let len = core::cmp::max(req.len(), resp.len()) as u8; self.custom_instruction_start(opcode, req, len)?; self.wait_ready().await; self.custom_instruction_finish(resp)?; ondrop.defuse(); Ok(()) } /// Do a custom QSPI instruction, blocking version. pub fn blocking_custom_instruction(&mut self, opcode: u8, req: &[u8], resp: &mut [u8]) -> Result<(), Error> { let len = core::cmp::max(req.len(), resp.len()) as u8; self.custom_instruction_start(opcode, req, len)?; Self::blocking_wait_ready(); self.custom_instruction_finish(resp)?; Ok(()) } fn custom_instruction_start(&mut self, opcode: u8, req: &[u8], len: u8) -> Result<(), Error> { assert!(req.len() <= 8); let mut dat0: u32 = 0; let mut dat1: u32 = 0; for i in 0..4 { if i < req.len() { dat0 |= (req[i] as u32) << (i * 8); } } for i in 0..4 { if i + 4 < req.len() { dat1 |= (req[i + 4] as u32) << (i * 8); } } let r = T::regs(); r.cinstrdat0.write(|w| unsafe { w.bits(dat0) }); r.cinstrdat1.write(|w| unsafe { w.bits(dat1) }); r.events_ready.reset(); r.intenset.write(|w| w.ready().set()); r.cinstrconf.write(|w| { let w = unsafe { w.opcode().bits(opcode) }; let w = unsafe { w.length().bits(len + 1) }; let w = w.lio2().bit(true); let w = w.lio3().bit(true); let w = w.wipwait().bit(true); let w = w.wren().bit(true); let w = w.lfen().bit(false); let w = w.lfstop().bit(false); w }); Ok(()) } fn custom_instruction_finish(&mut self, resp: &mut [u8]) -> Result<(), Error> { let r = T::regs(); let dat0 = r.cinstrdat0.read().bits(); let dat1 = r.cinstrdat1.read().bits(); for i in 0..4 { if i < resp.len() { resp[i] = (dat0 >> (i * 8)) as u8; } } for i in 0..4 { if i + 4 < resp.len() { resp[i] = (dat1 >> (i * 8)) as u8; } } Ok(()) } async fn wait_ready(&mut self) { poll_fn(move |cx| { let r = T::regs(); let s = T::state(); s.ready_waker.register(cx.waker()); if r.events_ready.read().bits() != 0 { return Poll::Ready(()); } Poll::Pending }) .await } fn blocking_wait_ready() { loop { let r = T::regs(); if r.events_ready.read().bits() != 0 { break; } } } fn start_read(&mut self, address: u32, data: &mut [u8]) -> Result<(), Error> { // TODO: Return these as errors instead. assert_eq!(data.as_ptr() as u32 % 4, 0); assert_eq!(data.len() as u32 % 4, 0); assert_eq!(address % 4, 0); let r = T::regs(); r.read.src.write(|w| unsafe { w.src().bits(address) }); r.read.dst.write(|w| unsafe { w.dst().bits(data.as_ptr() as u32) }); r.read.cnt.write(|w| unsafe { w.cnt().bits(data.len() as u32) }); r.events_ready.reset(); r.intenset.write(|w| w.ready().set()); r.tasks_readstart.write(|w| w.tasks_readstart().bit(true)); Ok(()) } fn start_write(&mut self, address: u32, data: &[u8]) -> Result<(), Error> { // TODO: Return these as errors instead. assert_eq!(data.as_ptr() as u32 % 4, 0); assert_eq!(data.len() as u32 % 4, 0); assert_eq!(address % 4, 0); let r = T::regs(); r.write.src.write(|w| unsafe { w.src().bits(data.as_ptr() as u32) }); r.write.dst.write(|w| unsafe { w.dst().bits(address) }); r.write.cnt.write(|w| unsafe { w.cnt().bits(data.len() as u32) }); r.events_ready.reset(); r.intenset.write(|w| w.ready().set()); r.tasks_writestart.write(|w| w.tasks_writestart().bit(true)); Ok(()) } fn start_erase(&mut self, address: u32) -> Result<(), Error> { // TODO: Return these as errors instead. assert_eq!(address % 4096, 0); let r = T::regs(); r.erase.ptr.write(|w| unsafe { w.ptr().bits(address) }); r.erase.len.write(|w| w.len()._4kb()); r.events_ready.reset(); r.intenset.write(|w| w.ready().set()); r.tasks_erasestart.write(|w| w.tasks_erasestart().bit(true)); Ok(()) } /// Raw QSPI read. /// /// The difference with `read` is that this does not do bounds checks /// against the flash capacity. It is intended for use when QSPI is used as /// a raw bus, not with flash memory. pub async fn read_raw(&mut self, address: u32, data: &mut [u8]) -> Result<(), Error> { let ondrop = OnDrop::new(Self::blocking_wait_ready); self.start_read(address, data)?; self.wait_ready().await; ondrop.defuse(); Ok(()) } /// Raw QSPI write. /// /// The difference with `write` is that this does not do bounds checks /// against the flash capacity. It is intended for use when QSPI is used as /// a raw bus, not with flash memory. pub async fn write_raw(&mut self, address: u32, data: &[u8]) -> Result<(), Error> { let ondrop = OnDrop::new(Self::blocking_wait_ready); self.start_write(address, data)?; self.wait_ready().await; ondrop.defuse(); Ok(()) } /// Raw QSPI read, blocking version. /// /// The difference with `blocking_read` is that this does not do bounds checks /// against the flash capacity. It is intended for use when QSPI is used as /// a raw bus, not with flash memory. pub fn blocking_read_raw(&mut self, address: u32, data: &mut [u8]) -> Result<(), Error> { self.start_read(address, data)?; Self::blocking_wait_ready(); Ok(()) } /// Raw QSPI write, blocking version. /// /// The difference with `blocking_write` is that this does not do bounds checks /// against the flash capacity. It is intended for use when QSPI is used as /// a raw bus, not with flash memory. pub fn blocking_write_raw(&mut self, address: u32, data: &[u8]) -> Result<(), Error> { self.start_write(address, data)?; Self::blocking_wait_ready(); Ok(()) } /// Read data from the flash memory. pub async fn read(&mut self, address: u32, data: &mut [u8]) -> Result<(), Error> { self.bounds_check(address, data.len())?; self.read_raw(address, data).await } /// Write data to the flash memory. pub async fn write(&mut self, address: u32, data: &[u8]) -> Result<(), Error> { self.bounds_check(address, data.len())?; self.write_raw(address, data).await } /// Erase a sector on the flash memory. pub async fn erase(&mut self, address: u32) -> Result<(), Error> { if address >= self.capacity { return Err(Error::OutOfBounds); } let ondrop = OnDrop::new(Self::blocking_wait_ready); self.start_erase(address)?; self.wait_ready().await; ondrop.defuse(); Ok(()) } /// Read data from the flash memory, blocking version. pub fn blocking_read(&mut self, address: u32, data: &mut [u8]) -> Result<(), Error> { self.bounds_check(address, data.len())?; self.blocking_read_raw(address, data) } /// Write data to the flash memory, blocking version. pub fn blocking_write(&mut self, address: u32, data: &[u8]) -> Result<(), Error> { self.bounds_check(address, data.len())?; self.blocking_write_raw(address, data) } /// Erase a sector on the flash memory, blocking version. pub fn blocking_erase(&mut self, address: u32) -> Result<(), Error> { if address >= self.capacity { return Err(Error::OutOfBounds); } self.start_erase(address)?; Self::blocking_wait_ready(); Ok(()) } fn bounds_check(&self, address: u32, len: usize) -> Result<(), Error> { let len_u32: u32 = len.try_into().map_err(|_| Error::OutOfBounds)?; let end_address = address.checked_add(len_u32).ok_or(Error::OutOfBounds)?; if end_address > self.capacity { return Err(Error::OutOfBounds); } Ok(()) } } impl<'d, T: Instance> Drop for Qspi<'d, T> { fn drop(&mut self) { let r = T::regs(); if self.dpm_enabled { trace!("qspi: doing deep powerdown..."); r.ifconfig1.modify(|_, w| w.dpmen().enter()); // Wait for DPM enter. // Unfortunately we must spin. There's no way to do this interrupt-driven. // The READY event does NOT fire on DPM enter (but it does fire on DPM exit :shrug:) while r.status.read().dpm().is_disabled() {} // Wait MORE for DPM enter. // I have absolutely no idea why, but the wait above is not enough :'( // Tested with mx25r64 in nrf52840-dk, and with mx25r16 in custom board cortex_m::asm::delay(4096); } // it seems events_ready is not generated in response to deactivate. nrfx doesn't wait for it. r.tasks_deactivate.write(|w| w.tasks_deactivate().set_bit()); // Workaround https://infocenter.nordicsemi.com/topic/errata_nRF52840_Rev1/ERR/nRF52840/Rev1/latest/anomaly_840_122.html?cp=4_0_1_2_1_7 // Note that the doc has 2 register writes, but the first one is really the write to tasks_deactivate, // so we only do the second one here. unsafe { ptr::write_volatile(0x40029054 as *mut u32, 1) } r.enable.write(|w| w.enable().disabled()); self.irq.disable(); // Note: we do NOT deconfigure CSN here. If DPM is in use and we disconnect CSN, // leaving it floating, the flash chip might read it as zero which would cause it to // spuriously exit DPM. gpio::deconfigure_pin(r.psel.sck.read().bits()); gpio::deconfigure_pin(r.psel.io0.read().bits()); gpio::deconfigure_pin(r.psel.io1.read().bits()); gpio::deconfigure_pin(r.psel.io2.read().bits()); gpio::deconfigure_pin(r.psel.io3.read().bits()); trace!("qspi: dropped"); } } impl<'d, T: Instance> ErrorType for Qspi<'d, T> { type Error = Error; } impl NorFlashError for Error { fn kind(&self) -> NorFlashErrorKind { NorFlashErrorKind::Other } } impl<'d, T: Instance> ReadNorFlash for Qspi<'d, T> { const READ_SIZE: usize = 4; fn read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Self::Error> { self.blocking_read(offset, bytes)?; Ok(()) } fn capacity(&self) -> usize { self.capacity as usize } } impl<'d, T: Instance> NorFlash for Qspi<'d, T> { const WRITE_SIZE: usize = 4; const ERASE_SIZE: usize = 4096; fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> { for address in (from..to).step_by(::ERASE_SIZE) { self.blocking_erase(address)?; } Ok(()) } fn write(&mut self, offset: u32, bytes: &[u8]) -> Result<(), Self::Error> { self.blocking_write(offset, bytes)?; Ok(()) } } #[cfg(feature = "nightly")] mod _eh1 { use core::future::Future; use embedded_storage_async::nor_flash::{AsyncNorFlash, AsyncReadNorFlash}; use super::*; impl<'d, T: Instance> AsyncNorFlash for Qspi<'d, T> { const WRITE_SIZE: usize = ::WRITE_SIZE; const ERASE_SIZE: usize = ::ERASE_SIZE; type WriteFuture<'a> = impl Future> + 'a where Self: 'a; fn write<'a>(&'a mut self, offset: u32, data: &'a [u8]) -> Self::WriteFuture<'a> { async move { self.write(offset, data).await } } type EraseFuture<'a> = impl Future> + 'a where Self: 'a; fn erase<'a>(&'a mut self, from: u32, to: u32) -> Self::EraseFuture<'a> { async move { for address in (from..to).step_by(::ERASE_SIZE) { self.erase(address).await? } Ok(()) } } } impl<'d, T: Instance> AsyncReadNorFlash for Qspi<'d, T> { const READ_SIZE: usize = 4; type ReadFuture<'a> = impl Future> + 'a where Self: 'a; fn read<'a>(&'a mut self, address: u32, data: &'a mut [u8]) -> Self::ReadFuture<'a> { async move { self.read(address, data).await } } fn capacity(&self) -> usize { self.capacity as usize } } } pub(crate) mod sealed { use embassy_sync::waitqueue::AtomicWaker; use super::*; pub struct State { pub ready_waker: AtomicWaker, } impl State { pub const fn new() -> Self { Self { ready_waker: AtomicWaker::new(), } } } pub trait Instance { fn regs() -> &'static pac::qspi::RegisterBlock; fn state() -> &'static State; } } /// QSPI peripheral instance. pub trait Instance: Peripheral

+ sealed::Instance + 'static { /// Interrupt for this peripheral. type Interrupt: Interrupt; } macro_rules! impl_qspi { ($type:ident, $pac_type:ident, $irq:ident) => { impl crate::qspi::sealed::Instance for peripherals::$type { fn regs() -> &'static pac::qspi::RegisterBlock { unsafe { &*pac::$pac_type::ptr() } } fn state() -> &'static crate::qspi::sealed::State { static STATE: crate::qspi::sealed::State = crate::qspi::sealed::State::new(); &STATE } } impl crate::qspi::Instance for peripherals::$type { type Interrupt = crate::interrupt::$irq; } }; }