use embedded_hal_02::blocking; /// Wrapper that implements async traits using blocking implementations. /// /// This allows driver writers to depend on the async traits while still supporting embedded-hal peripheral implementations. /// /// BlockingAsync will implement any async trait that maps to embedded-hal traits implemented for the wrapped driver. /// /// Driver users are then free to choose which implementation that is available to them. pub struct BlockingAsync { wrapped: T, } impl BlockingAsync { /// Create a new instance of a wrapper for a given peripheral. pub fn new(wrapped: T) -> Self { Self { wrapped } } } // // I2C implementations // impl embedded_hal_1::i2c::ErrorType for BlockingAsync where E: embedded_hal_1::i2c::Error + 'static, T: blocking::i2c::WriteRead + blocking::i2c::Read + blocking::i2c::Write, { type Error = E; } impl embedded_hal_async::i2c::I2c for BlockingAsync where E: embedded_hal_1::i2c::Error + 'static, T: blocking::i2c::WriteRead + blocking::i2c::Read + blocking::i2c::Write, { async fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> { self.wrapped.read(address, read) } async fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> { self.wrapped.write(address, write) } async fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> { self.wrapped.write_read(address, write, read) } async fn transaction( &mut self, address: u8, operations: &mut [embedded_hal_1::i2c::Operation<'_>], ) -> Result<(), Self::Error> { let _ = address; let _ = operations; todo!() } } // // SPI implementatinos // impl embedded_hal_async::spi::ErrorType for BlockingAsync where E: embedded_hal_1::spi::Error, T: blocking::spi::Transfer + blocking::spi::Write, { type Error = E; } impl embedded_hal_async::spi::SpiBus for BlockingAsync where E: embedded_hal_1::spi::Error + 'static, T: blocking::spi::Transfer + blocking::spi::Write, { async fn flush(&mut self) -> Result<(), Self::Error> { Ok(()) } async fn write(&mut self, data: &[u8]) -> Result<(), Self::Error> { self.wrapped.write(data)?; Ok(()) } async fn read(&mut self, data: &mut [u8]) -> Result<(), Self::Error> { self.wrapped.transfer(data)?; Ok(()) } async fn transfer(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Self::Error> { // Ensure we write the expected bytes for i in 0..core::cmp::min(read.len(), write.len()) { read[i] = write[i].clone(); } self.wrapped.transfer(read)?; Ok(()) } async fn transfer_in_place(&mut self, data: &mut [u8]) -> Result<(), Self::Error> { self.wrapped.transfer(data)?; Ok(()) } } /// NOR flash wrapper use embedded_storage::nor_flash::{ErrorType, NorFlash, ReadNorFlash}; use embedded_storage_async::nor_flash::{NorFlash as AsyncNorFlash, ReadNorFlash as AsyncReadNorFlash}; impl ErrorType for BlockingAsync where T: ErrorType, { type Error = T::Error; } impl AsyncNorFlash for BlockingAsync where T: NorFlash, { const WRITE_SIZE: usize = ::WRITE_SIZE; const ERASE_SIZE: usize = ::ERASE_SIZE; async fn write(&mut self, offset: u32, data: &[u8]) -> Result<(), Self::Error> { self.wrapped.write(offset, data) } async fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> { self.wrapped.erase(from, to) } } impl AsyncReadNorFlash for BlockingAsync where T: ReadNorFlash, { const READ_SIZE: usize = ::READ_SIZE; async fn read(&mut self, address: u32, data: &mut [u8]) -> Result<(), Self::Error> { self.wrapped.read(address, data) } fn capacity(&self) -> usize { self.wrapped.capacity() } }