use crate::pac::flash::vals::Latency; use crate::pac::rcc::vals::Sw; pub use crate::pac::rcc::vals::{ Hpre as AHBPrescaler, Pllm as PLLPreDiv, Plln as PLLMul, Pllp as PLLPDiv, Pllq as PLLQDiv, Pllsrc as PLLSrc, Ppre as APBPrescaler, }; use crate::pac::{FLASH, RCC}; use crate::rcc::{set_freqs, Clocks}; use crate::time::Hertz; /// HSI speed pub const HSI_FREQ: Hertz = Hertz(16_000_000); #[derive(Clone, Copy)] pub struct HSEConfig { pub frequency: Hertz, pub source: HSESrc, } /// System clock mux source #[derive(Clone, Copy)] pub enum ClockSrc { HSE, HSI, PLL, } /// HSE clock source #[derive(Clone, Copy)] pub enum HSESrc { /// Crystal/ceramic resonator Crystal, /// External clock source, HSE bypassed Bypass, } #[derive(Clone, Copy)] pub struct PLLConfig { pub pre_div: PLLPreDiv, pub mul: PLLMul, pub p_div: PLLPDiv, pub q_div: PLLQDiv, } impl Default for PLLConfig { fn default() -> Self { PLLConfig { pre_div: PLLPreDiv::DIV16, mul: PLLMul::MUL192, p_div: PLLPDiv::DIV2, q_div: PLLQDiv::DIV4, } } } impl PLLConfig { pub fn clocks(&self, src_freq: Hertz) -> PLLClocks { let in_freq = src_freq / self.pre_div; let vco_freq = src_freq / self.pre_div * self.mul; let main_freq = vco_freq / self.p_div; let pll48_freq = vco_freq / self.q_div; PLLClocks { in_freq, vco_freq, main_freq, pll48_freq, } } } #[derive(Clone, Copy, PartialEq)] pub struct PLLClocks { pub in_freq: Hertz, pub vco_freq: Hertz, pub main_freq: Hertz, pub pll48_freq: Hertz, } /// Voltage range of the power supply used. /// /// Used to calculate flash waitstates. See /// RM0033 - Table 3. Number of wait states according to Cortex®-M3 clock frequency pub enum VoltageScale { /// 2.7 to 3.6 V Range0, /// 2.4 to 2.7 V Range1, /// 2.1 to 2.4 V Range2, /// 1.8 to 2.1 V Range3, } impl VoltageScale { const fn wait_states(&self, ahb_freq: Hertz) -> Option { let ahb_freq = ahb_freq.0; // Reference: RM0033 - Table 3. Number of wait states according to Cortex®-M3 clock // frequency match self { VoltageScale::Range3 => { if ahb_freq <= 16_000_000 { Some(Latency::WS0) } else if ahb_freq <= 32_000_000 { Some(Latency::WS1) } else if ahb_freq <= 48_000_000 { Some(Latency::WS2) } else if ahb_freq <= 64_000_000 { Some(Latency::WS3) } else if ahb_freq <= 80_000_000 { Some(Latency::WS4) } else if ahb_freq <= 96_000_000 { Some(Latency::WS5) } else if ahb_freq <= 112_000_000 { Some(Latency::WS6) } else if ahb_freq <= 120_000_000 { Some(Latency::WS7) } else { None } } VoltageScale::Range2 => { if ahb_freq <= 18_000_000 { Some(Latency::WS0) } else if ahb_freq <= 36_000_000 { Some(Latency::WS1) } else if ahb_freq <= 54_000_000 { Some(Latency::WS2) } else if ahb_freq <= 72_000_000 { Some(Latency::WS3) } else if ahb_freq <= 90_000_000 { Some(Latency::WS4) } else if ahb_freq <= 108_000_000 { Some(Latency::WS5) } else if ahb_freq <= 120_000_000 { Some(Latency::WS6) } else { None } } VoltageScale::Range1 => { if ahb_freq <= 24_000_000 { Some(Latency::WS0) } else if ahb_freq <= 48_000_000 { Some(Latency::WS1) } else if ahb_freq <= 72_000_000 { Some(Latency::WS2) } else if ahb_freq <= 96_000_000 { Some(Latency::WS3) } else if ahb_freq <= 120_000_000 { Some(Latency::WS4) } else { None } } VoltageScale::Range0 => { if ahb_freq <= 30_000_000 { Some(Latency::WS0) } else if ahb_freq <= 60_000_000 { Some(Latency::WS1) } else if ahb_freq <= 90_000_000 { Some(Latency::WS2) } else if ahb_freq <= 120_000_000 { Some(Latency::WS3) } else { None } } } } } /// Clocks configuration pub struct Config { pub hse: Option, pub hsi: bool, pub pll_mux: PLLSrc, pub pll: PLLConfig, pub mux: ClockSrc, pub voltage: VoltageScale, pub ahb_pre: AHBPrescaler, pub apb1_pre: APBPrescaler, pub apb2_pre: APBPrescaler, pub ls: super::LsConfig, } impl Default for Config { #[inline] fn default() -> Config { Config { hse: None, hsi: true, pll_mux: PLLSrc::HSI, pll: PLLConfig::default(), voltage: VoltageScale::Range3, mux: ClockSrc::HSI, ahb_pre: AHBPrescaler::DIV1, apb1_pre: APBPrescaler::DIV1, apb2_pre: APBPrescaler::DIV1, ls: Default::default(), } } } pub(crate) unsafe fn init(config: Config) { // Make sure HSI is enabled RCC.cr().write(|w| w.set_hsion(true)); while !RCC.cr().read().hsirdy() {} if let Some(hse_config) = config.hse { RCC.cr().modify(|w| { w.set_hsebyp(match hse_config.source { HSESrc::Bypass => true, HSESrc::Crystal => false, }); w.set_hseon(true) }); while !RCC.cr().read().hserdy() {} } let pll_src_freq = match config.pll_mux { PLLSrc::HSE => { let hse_config = config .hse .unwrap_or_else(|| panic!("HSE must be configured to be used as PLL input")); hse_config.frequency } PLLSrc::HSI => HSI_FREQ, }; // Reference: STM32F215xx/217xx datasheet Table 33. Main PLL characteristics let pll_clocks = config.pll.clocks(pll_src_freq); assert!(Hertz(950_000) <= pll_clocks.in_freq && pll_clocks.in_freq <= Hertz(2_100_000)); assert!(Hertz(192_000_000) <= pll_clocks.vco_freq && pll_clocks.vco_freq <= Hertz(432_000_000)); assert!(Hertz(24_000_000) <= pll_clocks.main_freq && pll_clocks.main_freq <= Hertz(120_000_000)); // USB actually requires == 48 MHz, but other PLL48 peripherals are fine with <= 48MHz assert!(pll_clocks.pll48_freq <= Hertz(48_000_000)); RCC.pllcfgr().write(|w| { w.set_pllsrc(config.pll_mux); w.set_pllm(config.pll.pre_div); w.set_plln(config.pll.mul); w.set_pllp(config.pll.p_div); w.set_pllq(config.pll.q_div); }); let (sys_clk, sw) = match config.mux { ClockSrc::HSI => { assert!(config.hsi, "HSI must be enabled to be used as system clock"); (HSI_FREQ, Sw::HSI) } ClockSrc::HSE => { let hse_config = config .hse .unwrap_or_else(|| panic!("HSE must be configured to be used as PLL input")); (hse_config.frequency, Sw::HSE) } ClockSrc::PLL => { RCC.cr().modify(|w| w.set_pllon(true)); while !RCC.cr().read().pllrdy() {} (pll_clocks.main_freq, Sw::PLL) } }; // RM0033 Figure 9. Clock tree suggests max SYSCLK/HCLK is 168 MHz, but datasheet specifies PLL // max output to be 120 MHz, so there's no way to get higher frequencies assert!(sys_clk <= Hertz(120_000_000)); let ahb_freq = sys_clk / config.ahb_pre; // Reference: STM32F215xx/217xx datasheet Table 13. General operating conditions assert!(ahb_freq <= Hertz(120_000_000)); let (apb1_freq, apb1_tim_freq) = match config.apb1_pre { APBPrescaler::DIV1 => (ahb_freq, ahb_freq), pre => { let freq = ahb_freq / pre; (freq, Hertz(freq.0 * 2)) } }; // Reference: STM32F215xx/217xx datasheet Table 13. General operating conditions assert!(apb1_freq <= Hertz(30_000_000)); let (apb2_freq, apb2_tim_freq) = match config.apb2_pre { APBPrescaler::DIV1 => (ahb_freq, ahb_freq), pre => { let freq = ahb_freq / pre; (freq, Hertz(freq.0 * 2)) } }; // Reference: STM32F215xx/217xx datasheet Table 13. General operating conditions assert!(apb2_freq <= Hertz(60_000_000)); let flash_ws = unwrap!(config.voltage.wait_states(ahb_freq)); FLASH.acr().modify(|w| w.set_latency(flash_ws)); RCC.cfgr().modify(|w| { w.set_sw(sw.into()); w.set_hpre(config.ahb_pre); w.set_ppre1(config.apb1_pre); w.set_ppre2(config.apb2_pre); }); while RCC.cfgr().read().sws().to_bits() != sw.to_bits() {} // Turn off HSI to save power if we don't need it if !config.hsi { RCC.cr().modify(|w| w.set_hsion(false)); } let rtc = config.ls.init(); set_freqs(Clocks { sys: sys_clk, hclk1: ahb_freq, hclk2: ahb_freq, hclk3: ahb_freq, pclk1: apb1_freq, pclk1_tim: apb1_tim_freq, pclk2: apb2_freq, pclk2_tim: apb2_tim_freq, pll1_q: Some(pll_clocks.pll48_freq), rtc, }); }