#![no_std] #![no_main] #![feature(type_alias_impl_trait, concat_bytes)] #![deny(unused_must_use)] // This mod MUST go first, so that the others see its macros. pub(crate) mod fmt; mod countries; mod events; mod structs; use core::cell::Cell; use core::cmp::{max, min}; use core::slice; use core::sync::atomic::Ordering; use core::task::Waker; use atomic_polyfill::AtomicBool; use embassy::blocking_mutex::raw::NoopRawMutex; use embassy::channel::mpmc::Channel; use embassy::time::{block_for, Duration, Timer}; use embassy::util::yield_now; use embassy_net::{PacketBoxExt, PacketBuf}; use embedded_hal_1::digital::blocking::OutputPin; use embedded_hal_async::spi::{SpiBusRead, SpiBusWrite, SpiDevice}; use self::structs::*; use crate::events::Event; fn swap16(x: u32) -> u32 { x.rotate_left(16) } fn cmd_word(write: bool, incr: bool, func: u32, addr: u32, len: u32) -> u32 { (write as u32) << 31 | (incr as u32) << 30 | (func & 0b11) << 28 | (addr & 0x1FFFF) << 11 | (len & 0x7FF) } fn slice8_mut(x: &mut [u32]) -> &mut [u8] { let len = x.len() * 4; unsafe { slice::from_raw_parts_mut(x.as_mut_ptr() as _, len) } } const FUNC_BUS: u32 = 0; const FUNC_BACKPLANE: u32 = 1; const FUNC_WLAN: u32 = 2; const FUNC_BT: u32 = 3; const REG_BUS_CTRL: u32 = 0x0; const REG_BUS_INTERRUPT: u32 = 0x04; // 16 bits - Interrupt status const REG_BUS_INTERRUPT_ENABLE: u32 = 0x06; // 16 bits - Interrupt mask const REG_BUS_STATUS: u32 = 0x8; const REG_BUS_FEEDBEAD: u32 = 0x14; const REG_BUS_TEST: u32 = 0x18; const REG_BUS_RESP_DELAY: u32 = 0x1c; // SPI_STATUS_REGISTER bits const STATUS_DATA_NOT_AVAILABLE: u32 = 0x00000001; const STATUS_UNDERFLOW: u32 = 0x00000002; const STATUS_OVERFLOW: u32 = 0x00000004; const STATUS_F2_INTR: u32 = 0x00000008; const STATUS_F3_INTR: u32 = 0x00000010; const STATUS_F2_RX_READY: u32 = 0x00000020; const STATUS_F3_RX_READY: u32 = 0x00000040; const STATUS_HOST_CMD_DATA_ERR: u32 = 0x00000080; const STATUS_F2_PKT_AVAILABLE: u32 = 0x00000100; const STATUS_F2_PKT_LEN_MASK: u32 = 0x000FFE00; const STATUS_F2_PKT_LEN_SHIFT: u32 = 9; const STATUS_F3_PKT_AVAILABLE: u32 = 0x00100000; const STATUS_F3_PKT_LEN_MASK: u32 = 0xFFE00000; const STATUS_F3_PKT_LEN_SHIFT: u32 = 21; const REG_BACKPLANE_GPIO_SELECT: u32 = 0x10005; const REG_BACKPLANE_GPIO_OUTPUT: u32 = 0x10006; const REG_BACKPLANE_GPIO_ENABLE: u32 = 0x10007; const REG_BACKPLANE_FUNCTION2_WATERMARK: u32 = 0x10008; const REG_BACKPLANE_DEVICE_CONTROL: u32 = 0x10009; const REG_BACKPLANE_BACKPLANE_ADDRESS_LOW: u32 = 0x1000A; const REG_BACKPLANE_BACKPLANE_ADDRESS_MID: u32 = 0x1000B; const REG_BACKPLANE_BACKPLANE_ADDRESS_HIGH: u32 = 0x1000C; const REG_BACKPLANE_FRAME_CONTROL: u32 = 0x1000D; const REG_BACKPLANE_CHIP_CLOCK_CSR: u32 = 0x1000E; const REG_BACKPLANE_PULL_UP: u32 = 0x1000F; const REG_BACKPLANE_READ_FRAME_BC_LOW: u32 = 0x1001B; const REG_BACKPLANE_READ_FRAME_BC_HIGH: u32 = 0x1001C; const REG_BACKPLANE_WAKEUP_CTRL: u32 = 0x1001E; const REG_BACKPLANE_SLEEP_CSR: u32 = 0x1001F; const BACKPLANE_WINDOW_SIZE: usize = 0x8000; const BACKPLANE_ADDRESS_MASK: u32 = 0x7FFF; const BACKPLANE_ADDRESS_32BIT_FLAG: u32 = 0x08000; const BACKPLANE_MAX_TRANSFER_SIZE: usize = 64; const AI_IOCTRL_OFFSET: u32 = 0x408; const AI_IOCTRL_BIT_FGC: u8 = 0x0002; const AI_IOCTRL_BIT_CLOCK_EN: u8 = 0x0001; const AI_IOCTRL_BIT_CPUHALT: u8 = 0x0020; const AI_RESETCTRL_OFFSET: u32 = 0x800; const AI_RESETCTRL_BIT_RESET: u8 = 1; const AI_RESETSTATUS_OFFSET: u32 = 0x804; const TEST_PATTERN: u32 = 0x12345678; const FEEDBEAD: u32 = 0xFEEDBEAD; // SPI_INTERRUPT_REGISTER and SPI_INTERRUPT_ENABLE_REGISTER Bits const IRQ_DATA_UNAVAILABLE: u16 = 0x0001; // Requested data not available; Clear by writing a "1" const IRQ_F2_F3_FIFO_RD_UNDERFLOW: u16 = 0x0002; const IRQ_F2_F3_FIFO_WR_OVERFLOW: u16 = 0x0004; const IRQ_COMMAND_ERROR: u16 = 0x0008; // Cleared by writing 1 const IRQ_DATA_ERROR: u16 = 0x0010; // Cleared by writing 1 const IRQ_F2_PACKET_AVAILABLE: u16 = 0x0020; const IRQ_F3_PACKET_AVAILABLE: u16 = 0x0040; const IRQ_F1_OVERFLOW: u16 = 0x0080; // Due to last write. Bkplane has pending write requests const IRQ_MISC_INTR0: u16 = 0x0100; const IRQ_MISC_INTR1: u16 = 0x0200; const IRQ_MISC_INTR2: u16 = 0x0400; const IRQ_MISC_INTR3: u16 = 0x0800; const IRQ_MISC_INTR4: u16 = 0x1000; const IRQ_F1_INTR: u16 = 0x2000; const IRQ_F2_INTR: u16 = 0x4000; const IRQ_F3_INTR: u16 = 0x8000; #[derive(Clone, Copy, PartialEq, Eq)] enum Core { WLAN = 0, SOCSRAM = 1, SDIOD = 2, } impl Core { fn base_addr(&self) -> u32 { match self { Self::WLAN => CHIP.arm_core_base_address, Self::SOCSRAM => CHIP.socsram_wrapper_base_address, Self::SDIOD => CHIP.sdiod_core_base_address, } } } struct Chip { arm_core_base_address: u32, socsram_base_address: u32, socsram_wrapper_base_address: u32, sdiod_core_base_address: u32, pmu_base_address: u32, chip_ram_size: u32, atcm_ram_base_address: u32, socram_srmem_size: u32, chanspec_band_mask: u32, chanspec_band_2g: u32, chanspec_band_5g: u32, chanspec_band_shift: u32, chanspec_bw_10: u32, chanspec_bw_20: u32, chanspec_bw_40: u32, chanspec_bw_mask: u32, chanspec_bw_shift: u32, chanspec_ctl_sb_lower: u32, chanspec_ctl_sb_upper: u32, chanspec_ctl_sb_none: u32, chanspec_ctl_sb_mask: u32, } const WRAPPER_REGISTER_OFFSET: u32 = 0x100000; // Data for CYW43439 const CHIP: Chip = Chip { arm_core_base_address: 0x18003000 + WRAPPER_REGISTER_OFFSET, socsram_base_address: 0x18004000, socsram_wrapper_base_address: 0x18004000 + WRAPPER_REGISTER_OFFSET, sdiod_core_base_address: 0x18002000, pmu_base_address: 0x18000000, chip_ram_size: 512 * 1024, atcm_ram_base_address: 0, socram_srmem_size: 64 * 1024, chanspec_band_mask: 0xc000, chanspec_band_2g: 0x0000, chanspec_band_5g: 0xc000, chanspec_band_shift: 14, chanspec_bw_10: 0x0800, chanspec_bw_20: 0x1000, chanspec_bw_40: 0x1800, chanspec_bw_mask: 0x3800, chanspec_bw_shift: 11, chanspec_ctl_sb_lower: 0x0000, chanspec_ctl_sb_upper: 0x0100, chanspec_ctl_sb_none: 0x0000, chanspec_ctl_sb_mask: 0x0700, }; #[derive(Clone, Copy)] enum IoctlState { Idle, Pending { kind: u32, cmd: u32, iface: u32, buf: *mut [u8], }, Sent { buf: *mut [u8], }, Done { resp_len: usize, }, } pub struct State { ioctl_state: Cell, tx_channel: Channel, rx_channel: Channel, link_up: AtomicBool, } impl State { pub fn new() -> Self { Self { ioctl_state: Cell::new(IoctlState::Idle), tx_channel: Channel::new(), rx_channel: Channel::new(), link_up: AtomicBool::new(true), // TODO set up/down as we join/deassociate } } } pub struct Control<'a> { state: &'a State, } impl<'a> Control<'a> { pub async fn init(&mut self, clm: &[u8]) -> NetDevice<'a> { const CHUNK_SIZE: usize = 1024; info!("Downloading CLM..."); let mut offs = 0; for chunk in clm.chunks(CHUNK_SIZE) { let mut flag = DOWNLOAD_FLAG_HANDLER_VER; if offs == 0 { flag |= DOWNLOAD_FLAG_BEGIN; } offs += chunk.len(); if offs == clm.len() { flag |= DOWNLOAD_FLAG_END; } let header = DownloadHeader { flag, dload_type: DOWNLOAD_TYPE_CLM, len: chunk.len() as _, crc: 0, }; let mut buf = [0; 8 + 12 + CHUNK_SIZE]; buf[0..8].copy_from_slice(b"clmload\x00"); buf[8..20].copy_from_slice(&header.to_bytes()); buf[20..][..chunk.len()].copy_from_slice(&chunk); self.ioctl(2, 263, 0, &mut buf[..8 + 12 + chunk.len()]).await; } // check clmload ok assert_eq!(self.get_iovar_u32("clmload_status").await, 0); info!("Configuring misc stuff..."); self.set_iovar_u32("bus:txglom", 0).await; self.set_iovar_u32("apsta", 1).await; // read MAC addr. let mut mac_addr = [0; 6]; assert_eq!(self.get_iovar("cur_etheraddr", &mut mac_addr).await, 6); info!("mac addr: {:02x}", mac_addr); let country = countries::WORLD_WIDE_XX; let country_info = CountryInfo { country_abbrev: [country.code[0], country.code[1], 0, 0], country_code: [country.code[0], country.code[1], 0, 0], rev: if country.rev == 0 { -1 } else { country.rev as _ }, }; self.set_iovar("country", &country_info.to_bytes()).await; // set country takes some time, next ioctls fail if we don't wait. Timer::after(Duration::from_millis(100)).await; self.ioctl_set_u32(64, 0, 0).await; // WLC_SET_ANTDIV self.set_iovar_u32("bus:txglom", 0).await; Timer::after(Duration::from_millis(100)).await; //self.set_iovar_u32("apsta", 1).await; // this crashes, also we already did it before...?? Timer::after(Duration::from_millis(100)).await; self.set_iovar_u32("ampdu_ba_wsize", 8).await; Timer::after(Duration::from_millis(100)).await; self.set_iovar_u32("ampdu_mpdu", 4).await; Timer::after(Duration::from_millis(100)).await; //self.set_iovar_u32("ampdu_rx_factor", 0).await; // this crashes Timer::after(Duration::from_millis(100)).await; // evts let mut evts = EventMask { iface: 0, events: [0xFF; 24], }; // Disable spammy uninteresting events. evts.unset(Event::RADIO); evts.unset(Event::IF); evts.unset(Event::PROBREQ_MSG); evts.unset(Event::PROBREQ_MSG_RX); evts.unset(Event::PROBRESP_MSG); evts.unset(Event::PROBRESP_MSG); self.set_iovar("bsscfg:event_msgs", &evts.to_bytes()).await; Timer::after(Duration::from_millis(100)).await; // set wifi up self.ioctl(2, 2, 0, &mut []).await; Timer::after(Duration::from_millis(100)).await; // power save mode 2 self.set_iovar_u32("pm2_sleep_ret", 0xc8).await; self.set_iovar_u32("bcn_li_bcn", 1).await; self.set_iovar_u32("bcn_li_dtim", 1).await; self.set_iovar_u32("assoc_listen", 10).await; self.ioctl_set_u32(0x86, 0, 2).await; self.ioctl_set_u32(110, 0, 1).await; // SET_GMODE = auto self.ioctl_set_u32(142, 0, 0).await; // SET_BAND = any Timer::after(Duration::from_millis(100)).await; info!("INIT DONE"); NetDevice { state: self.state, mac_addr, } } pub async fn join_open(&mut self, ssid: &str) { self.set_iovar_u32("ampdu_ba_wsize", 8).await; self.ioctl_set_u32(134, 0, 0).await; // wsec = open self.set_iovar_u32x2("bsscfg:sup_wpa", 0, 0).await; self.ioctl_set_u32(20, 0, 1).await; // set_infra = 1 self.ioctl_set_u32(22, 0, 0).await; // set_auth = open (0) let mut i = SsidInfo { len: ssid.len() as _, ssid: [0; 32], }; i.ssid[..ssid.len()].copy_from_slice(ssid.as_bytes()); self.ioctl(2, 26, 0, &mut i.to_bytes()).await; // set_ssid info!("JOINED"); } pub async fn join_wpa2(&mut self, ssid: &str, passphrase: &str) { self.set_iovar_u32("ampdu_ba_wsize", 8).await; self.ioctl_set_u32(134, 0, 4).await; // wsec = wpa2 self.set_iovar_u32x2("bsscfg:sup_wpa", 0, 1).await; self.set_iovar_u32x2("bsscfg:sup_wpa2_eapver", 0, 0xFFFF_FFFF).await; self.set_iovar_u32x2("bsscfg:sup_wpa_tmo", 0, 2500).await; Timer::after(Duration::from_millis(100)).await; let mut pfi = PassphraseInfo { len: passphrase.len() as _, flags: 1, passphrase: [0; 64], }; pfi.passphrase[..passphrase.len()].copy_from_slice(passphrase.as_bytes()); self.ioctl(2, 268, 0, &mut pfi.to_bytes()).await; // WLC_SET_WSEC_PMK self.ioctl_set_u32(20, 0, 1).await; // set_infra = 1 self.ioctl_set_u32(22, 0, 0).await; // set_auth = 0 (open) self.ioctl_set_u32(165, 0, 0x80).await; // set_wpa_auth let mut i = SsidInfo { len: ssid.len() as _, ssid: [0; 32], }; i.ssid[..ssid.len()].copy_from_slice(ssid.as_bytes()); self.ioctl(2, 26, 0, &mut i.to_bytes()).await; // set_ssid info!("JOINED"); } async fn set_iovar_u32x2(&mut self, name: &str, val1: u32, val2: u32) { let mut buf = [0; 8]; buf[0..4].copy_from_slice(&val1.to_le_bytes()); buf[4..8].copy_from_slice(&val2.to_le_bytes()); self.set_iovar(name, &buf).await } async fn set_iovar_u32(&mut self, name: &str, val: u32) { self.set_iovar(name, &val.to_le_bytes()).await } async fn get_iovar_u32(&mut self, name: &str) -> u32 { let mut buf = [0; 4]; let len = self.get_iovar(name, &mut buf).await; assert_eq!(len, 4); u32::from_le_bytes(buf) } async fn set_iovar(&mut self, name: &str, val: &[u8]) { info!("set {} = {:02x}", name, val); let mut buf = [0; 64]; buf[..name.len()].copy_from_slice(name.as_bytes()); buf[name.len()] = 0; buf[name.len() + 1..][..val.len()].copy_from_slice(val); let total_len = name.len() + 1 + val.len(); self.ioctl(2, 263, 0, &mut buf[..total_len]).await; } // TODO this is not really working, it always returns all zeros. async fn get_iovar(&mut self, name: &str, res: &mut [u8]) -> usize { info!("get {}", name); let mut buf = [0; 64]; buf[..name.len()].copy_from_slice(name.as_bytes()); buf[name.len()] = 0; let total_len = max(name.len() + 1, res.len()); let res_len = self.ioctl(0, 262, 0, &mut buf[..total_len]).await; let out_len = min(res.len(), res_len); res[..out_len].copy_from_slice(&buf[..out_len]); out_len } async fn ioctl_set_u32(&mut self, cmd: u32, iface: u32, val: u32) { let mut buf = val.to_le_bytes(); self.ioctl(2, cmd, 0, &mut buf).await; } async fn ioctl(&mut self, kind: u32, cmd: u32, iface: u32, buf: &mut [u8]) -> usize { // TODO cancel ioctl on future drop. while !matches!(self.state.ioctl_state.get(), IoctlState::Idle) { yield_now().await; } self.state .ioctl_state .set(IoctlState::Pending { kind, cmd, iface, buf }); let resp_len = loop { if let IoctlState::Done { resp_len } = self.state.ioctl_state.get() { break resp_len; } yield_now().await; }; self.state.ioctl_state.set(IoctlState::Idle); resp_len } } pub struct NetDevice<'a> { state: &'a State, mac_addr: [u8; 6], } impl<'a> embassy_net::Device for NetDevice<'a> { fn register_waker(&mut self, waker: &Waker) { // loopy loopy wakey wakey waker.wake_by_ref() } fn link_state(&mut self) -> embassy_net::LinkState { match self.state.link_up.load(Ordering::Relaxed) { true => embassy_net::LinkState::Up, false => embassy_net::LinkState::Down, } } fn capabilities(&self) -> embassy_net::DeviceCapabilities { let mut caps = embassy_net::DeviceCapabilities::default(); caps.max_transmission_unit = 1514; // 1500 IP + 14 ethernet header caps.medium = embassy_net::Medium::Ethernet; caps } fn is_transmit_ready(&mut self) -> bool { true } fn transmit(&mut self, pkt: PacketBuf) { if self.state.tx_channel.try_send(pkt).is_err() { warn!("TX failed") } } fn receive(&mut self) -> Option { self.state.rx_channel.try_recv().ok() } fn ethernet_address(&self) -> [u8; 6] { self.mac_addr } } pub struct Runner<'a, PWR, SPI> { state: &'a State, pwr: PWR, spi: SPI, ioctl_id: u16, sdpcm_seq: u8, backplane_window: u32, } pub async fn new<'a, PWR, SPI>( state: &'a State, pwr: PWR, spi: SPI, firmware: &[u8], ) -> (Control<'a>, Runner<'a, PWR, SPI>) where PWR: OutputPin, SPI: SpiDevice, SPI::Bus: SpiBusRead + SpiBusWrite, { let mut runner = Runner { state, pwr, spi, ioctl_id: 0, sdpcm_seq: 0, backplane_window: 0xAAAA_AAAA, }; runner.init(firmware).await; (Control { state }, runner) } impl<'a, PWR, SPI> Runner<'a, PWR, SPI> where PWR: OutputPin, SPI: SpiDevice, SPI::Bus: SpiBusRead + SpiBusWrite, { async fn init(&mut self, firmware: &[u8]) { // Reset self.pwr.set_low().unwrap(); Timer::after(Duration::from_millis(20)).await; self.pwr.set_high().unwrap(); Timer::after(Duration::from_millis(250)).await; info!("waiting for ping..."); while self.read32_swapped(REG_BUS_FEEDBEAD).await != FEEDBEAD {} info!("ping ok"); self.write32_swapped(0x18, TEST_PATTERN).await; let val = self.read32_swapped(REG_BUS_TEST).await; assert_eq!(val, TEST_PATTERN); // 32bit, little endian. self.write32_swapped(REG_BUS_CTRL, 0x00010031).await; let val = self.read32(FUNC_BUS, REG_BUS_FEEDBEAD).await; assert_eq!(val, FEEDBEAD); let val = self.read32(FUNC_BUS, REG_BUS_TEST).await; assert_eq!(val, TEST_PATTERN); // No response delay in any of the funcs. // seems to break backplane??? eat the 4-byte delay instead, that's what the vendor drivers do... //self.write32(FUNC_BUS, REG_BUS_RESP_DELAY, 0).await; // Init ALP (no idea what that stands for) clock self.write8(FUNC_BACKPLANE, REG_BACKPLANE_CHIP_CLOCK_CSR, 0x08).await; info!("waiting for clock..."); while self.read8(FUNC_BACKPLANE, REG_BACKPLANE_CHIP_CLOCK_CSR).await & 0x40 == 0 {} info!("clock ok"); let chip_id = self.bp_read16(0x1800_0000).await; info!("chip ID: {}", chip_id); // Upload firmware. self.core_disable(Core::WLAN).await; self.core_reset(Core::SOCSRAM).await; self.bp_write32(CHIP.socsram_base_address + 0x10, 3).await; self.bp_write32(CHIP.socsram_base_address + 0x44, 0).await; let ram_addr = CHIP.atcm_ram_base_address; info!("loading fw"); self.bp_write(ram_addr, firmware).await; info!("loading nvram"); // Round up to 4 bytes. let nvram_len = (NVRAM.len() + 3) / 4 * 4; self.bp_write(ram_addr + CHIP.chip_ram_size - 4 - nvram_len as u32, NVRAM) .await; let nvram_len_words = nvram_len as u32 / 4; let nvram_len_magic = (!nvram_len_words << 16) | nvram_len_words; self.bp_write32(ram_addr + CHIP.chip_ram_size - 4, nvram_len_magic) .await; // Start core! info!("starting up core..."); self.core_reset(Core::WLAN).await; assert!(self.core_is_up(Core::WLAN).await); while self.read8(FUNC_BACKPLANE, REG_BACKPLANE_CHIP_CLOCK_CSR).await & 0x80 == 0 {} // "Set up the interrupt mask and enable interrupts" self.bp_write32(CHIP.sdiod_core_base_address + 0x24, 0xF0).await; // "Lower F2 Watermark to avoid DMA Hang in F2 when SD Clock is stopped." // Sounds scary... self.write8(FUNC_BACKPLANE, REG_BACKPLANE_FUNCTION2_WATERMARK, 32).await; // wait for wifi startup info!("waiting for wifi init..."); while self.read32(FUNC_BUS, REG_BUS_STATUS).await & STATUS_F2_RX_READY == 0 {} // Some random configs related to sleep. // These aren't needed if we don't want to sleep the bus. // TODO do we need to sleep the bus to read the irq line, due to // being on the same pin as MOSI/MISO? /* let mut val = self.read8(FUNC_BACKPLANE, REG_BACKPLANE_WAKEUP_CTRL).await; val |= 0x02; // WAKE_TILL_HT_AVAIL self.write8(FUNC_BACKPLANE, REG_BACKPLANE_WAKEUP_CTRL, val).await; self.write8(FUNC_BUS, 0xF0, 0x08).await; // SDIOD_CCCR_BRCM_CARDCAP.CMD_NODEC = 1 self.write8(FUNC_BACKPLANE, REG_BACKPLANE_CHIP_CLOCK_CSR, 0x02).await; // SBSDIO_FORCE_HT let mut val = self.read8(FUNC_BACKPLANE, REG_BACKPLANE_SLEEP_CSR).await; val |= 0x01; // SBSDIO_SLPCSR_KEEP_SDIO_ON self.write8(FUNC_BACKPLANE, REG_BACKPLANE_SLEEP_CSR, val).await; */ // clear pulls self.write8(FUNC_BACKPLANE, REG_BACKPLANE_PULL_UP, 0).await; let _ = self.read8(FUNC_BACKPLANE, REG_BACKPLANE_PULL_UP).await; // start HT clock //self.write8(FUNC_BACKPLANE, REG_BACKPLANE_CHIP_CLOCK_CSR, 0x10).await; //info!("waiting for HT clock..."); //while self.read8(FUNC_BACKPLANE, REG_BACKPLANE_CHIP_CLOCK_CSR).await & 0x80 == 0 {} //info!("clock ok"); info!("init done "); } pub async fn run(mut self) -> ! { let mut buf = [0; 512]; loop { // Send stuff // TODO flow control if let IoctlState::Pending { kind, cmd, iface, buf } = self.state.ioctl_state.get() { self.send_ioctl(kind, cmd, iface, unsafe { &*buf }).await; self.state.ioctl_state.set(IoctlState::Sent { buf }); } if let Ok(p) = self.state.tx_channel.try_recv() { self.send_packet(&p).await; } // Receive stuff let irq = self.read16(FUNC_BUS, REG_BUS_INTERRUPT).await; if irq & IRQ_F2_PACKET_AVAILABLE != 0 { let mut status = 0xFFFF_FFFF; while status == 0xFFFF_FFFF { status = self.read32(FUNC_BUS, REG_BUS_STATUS).await; } if status & STATUS_F2_PKT_AVAILABLE != 0 { let len = (status & STATUS_F2_PKT_LEN_MASK) >> STATUS_F2_PKT_LEN_SHIFT; let cmd = cmd_word(false, true, FUNC_WLAN, 0, len); self.spi .transaction(|bus| { let bus = unsafe { &mut *bus }; async { bus.write(&[cmd]).await?; bus.read(&mut buf[..(len as usize + 3) / 4]).await?; Ok(()) } }) .await .unwrap(); trace!("rx {:02x}", &slice8_mut(&mut buf)[..(len as usize).min(48)]); self.rx(&slice8_mut(&mut buf)[..len as usize]); } } // TODO use IRQs yield_now().await; } } async fn send_packet(&mut self, packet: &[u8]) { trace!("tx pkt {:02x}", &packet[..packet.len().min(48)]); let mut buf = [0; 512]; let buf8 = slice8_mut(&mut buf); let total_len = SdpcmHeader::SIZE + BcdHeader::SIZE + packet.len(); let seq = self.sdpcm_seq; self.sdpcm_seq = self.sdpcm_seq.wrapping_add(1); let sdpcm_header = SdpcmHeader { len: total_len as u16, // TODO does this len need to be rounded up to u32? len_inv: !total_len as u16, sequence: seq, channel_and_flags: 2, // data channel next_length: 0, header_length: SdpcmHeader::SIZE as _, wireless_flow_control: 0, bus_data_credit: 0, reserved: [0, 0], }; let bcd_header = BcdHeader { flags: 0x20, priority: 0, flags2: 0, data_offset: 0, }; trace!("tx {:?}", sdpcm_header); trace!(" {:?}", bcd_header); buf8[0..SdpcmHeader::SIZE].copy_from_slice(&sdpcm_header.to_bytes()); buf8[SdpcmHeader::SIZE..][..BcdHeader::SIZE].copy_from_slice(&bcd_header.to_bytes()); buf8[SdpcmHeader::SIZE + BcdHeader::SIZE..][..packet.len()].copy_from_slice(packet); let total_len = (total_len + 3) & !3; // round up to 4byte trace!(" {:02x}", &buf8[..total_len.min(48)]); let cmd = cmd_word(true, true, FUNC_WLAN, 0, total_len as _); self.spi .transaction(|bus| { let bus = unsafe { &mut *bus }; async { bus.write(&[cmd]).await?; bus.write(&buf[..(total_len + 3 / 4)]).await?; Ok(()) } }) .await .unwrap(); } fn rx(&mut self, packet: &[u8]) { if packet.len() < SdpcmHeader::SIZE { warn!("packet too short, len={}", packet.len()); return; } let sdpcm_header = SdpcmHeader::from_bytes(packet[..SdpcmHeader::SIZE].try_into().unwrap()); trace!("rx {:?}", sdpcm_header); if sdpcm_header.len != !sdpcm_header.len_inv { warn!("len inv mismatch"); return; } if sdpcm_header.len as usize != packet.len() { // TODO: is this guaranteed?? warn!("len from header doesn't match len from spi"); return; } let channel = sdpcm_header.channel_and_flags & 0x0f; let payload = &packet[sdpcm_header.header_length as _..]; match channel { 0 => { if payload.len() < CdcHeader::SIZE { warn!("payload too short, len={}", payload.len()); return; } let cdc_header = CdcHeader::from_bytes(payload[..CdcHeader::SIZE].try_into().unwrap()); trace!(" {:?}", cdc_header); if let IoctlState::Sent { buf } = self.state.ioctl_state.get() { if cdc_header.id == self.ioctl_id { assert_eq!(cdc_header.status, 0); // todo propagate error instead let resp_len = cdc_header.len as usize; info!("IOCTL Response: {:02x}", &payload[CdcHeader::SIZE..][..resp_len]); (unsafe { &mut *buf }[..resp_len]).copy_from_slice(&payload[CdcHeader::SIZE..][..resp_len]); self.state.ioctl_state.set(IoctlState::Done { resp_len }); } } } 1 => { let bcd_header = BcdHeader::from_bytes(&payload[..BcdHeader::SIZE].try_into().unwrap()); trace!(" {:?}", bcd_header); let packet_start = BcdHeader::SIZE + 4 * bcd_header.data_offset as usize; if packet_start > payload.len() { warn!("packet start out of range."); return; } let packet = &payload[packet_start..]; trace!(" {:02x}", &packet[..(packet.len() as usize).min(36)]); let mut evt = EventHeader::from_bytes(&packet[24..][..EventHeader::SIZE].try_into().unwrap()); evt.byteswap(); let evt_data = &packet[24 + EventHeader::SIZE..][..evt.datalen as usize]; debug!( "=== EVENT {}: {} {:02x}", events::Event::from(evt.event_type as u8), evt, evt_data ); } 2 => { let bcd_header = BcdHeader::from_bytes(&payload[..BcdHeader::SIZE].try_into().unwrap()); trace!(" {:?}", bcd_header); let packet_start = BcdHeader::SIZE + 4 * bcd_header.data_offset as usize; if packet_start > payload.len() { warn!("packet start out of range."); return; } let packet = &payload[packet_start..]; trace!("rx pkt {:02x}", &packet[..(packet.len() as usize).min(48)]); let mut p = unwrap!(embassy_net::PacketBox::new(embassy_net::Packet::new())); p[..packet.len()].copy_from_slice(packet); if let Err(_) = self.state.rx_channel.try_send(p.slice(0..packet.len())) { warn!("failed to push rxd packet to the channel.") } } _ => {} } } async fn send_ioctl(&mut self, kind: u32, cmd: u32, iface: u32, data: &[u8]) { let mut buf = [0; 512]; let buf8 = slice8_mut(&mut buf); let total_len = SdpcmHeader::SIZE + CdcHeader::SIZE + data.len(); let sdpcm_seq = self.sdpcm_seq; self.sdpcm_seq = self.sdpcm_seq.wrapping_add(1); self.ioctl_id = self.ioctl_id.wrapping_add(1); let sdpcm_header = SdpcmHeader { len: total_len as u16, // TODO does this len need to be rounded up to u32? len_inv: !total_len as u16, sequence: sdpcm_seq, channel_and_flags: 0, // control channel next_length: 0, header_length: SdpcmHeader::SIZE as _, wireless_flow_control: 0, bus_data_credit: 0, reserved: [0, 0], }; let cdc_header = CdcHeader { cmd: cmd, len: data.len() as _, flags: kind as u16 | (iface as u16) << 12, id: self.ioctl_id, status: 0, }; trace!("tx {:?}", sdpcm_header); trace!(" {:?}", cdc_header); buf8[0..SdpcmHeader::SIZE].copy_from_slice(&sdpcm_header.to_bytes()); buf8[SdpcmHeader::SIZE..][..CdcHeader::SIZE].copy_from_slice(&cdc_header.to_bytes()); buf8[SdpcmHeader::SIZE + CdcHeader::SIZE..][..data.len()].copy_from_slice(data); let total_len = (total_len + 3) & !3; // round up to 4byte trace!(" {:02x}", &buf8[..total_len.min(48)]); let cmd = cmd_word(true, true, FUNC_WLAN, 0, total_len as _); self.spi .transaction(|bus| { let bus = unsafe { &mut *bus }; async { bus.write(&[cmd]).await?; bus.write(&buf[..total_len / 4]).await?; Ok(()) } }) .await .unwrap(); } async fn core_disable(&mut self, core: Core) { let base = core.base_addr(); // Dummy read? let _ = self.bp_read8(base + AI_RESETCTRL_OFFSET).await; // Check it isn't already reset let r = self.bp_read8(base + AI_RESETCTRL_OFFSET).await; if r & AI_RESETCTRL_BIT_RESET != 0 { return; } self.bp_write8(base + AI_IOCTRL_OFFSET, 0).await; let _ = self.bp_read8(base + AI_IOCTRL_OFFSET).await; block_for(Duration::from_millis(1)); self.bp_write8(base + AI_RESETCTRL_OFFSET, AI_RESETCTRL_BIT_RESET).await; let _ = self.bp_read8(base + AI_RESETCTRL_OFFSET).await; } async fn core_reset(&mut self, core: Core) { self.core_disable(core).await; let base = core.base_addr(); self.bp_write8(base + AI_IOCTRL_OFFSET, AI_IOCTRL_BIT_FGC | AI_IOCTRL_BIT_CLOCK_EN) .await; let _ = self.bp_read8(base + AI_IOCTRL_OFFSET).await; self.bp_write8(base + AI_RESETCTRL_OFFSET, 0).await; Timer::after(Duration::from_millis(1)).await; self.bp_write8(base + AI_IOCTRL_OFFSET, AI_IOCTRL_BIT_CLOCK_EN).await; let _ = self.bp_read8(base + AI_IOCTRL_OFFSET).await; Timer::after(Duration::from_millis(1)).await; } async fn core_is_up(&mut self, core: Core) -> bool { let base = core.base_addr(); let io = self.bp_read8(base + AI_IOCTRL_OFFSET).await; if io & (AI_IOCTRL_BIT_FGC | AI_IOCTRL_BIT_CLOCK_EN) != AI_IOCTRL_BIT_CLOCK_EN { debug!("core_is_up: returning false due to bad ioctrl {:02x}", io); return false; } let r = self.bp_read8(base + AI_RESETCTRL_OFFSET).await; if r & (AI_RESETCTRL_BIT_RESET) != 0 { debug!("core_is_up: returning false due to bad resetctrl {:02x}", r); return false; } true } async fn bp_read(&mut self, mut addr: u32, mut data: &mut [u32]) { // It seems the HW force-aligns the addr // to 2 if data.len() >= 2 // to 4 if data.len() >= 4 // To simplify, enforce 4-align for now. assert!(addr % 4 == 0); while !data.is_empty() { // Ensure transfer doesn't cross a window boundary. let window_offs = addr & BACKPLANE_ADDRESS_MASK; let window_remaining = BACKPLANE_WINDOW_SIZE - window_offs as usize; let len = data.len().min(BACKPLANE_MAX_TRANSFER_SIZE).min(window_remaining); self.backplane_set_window(addr).await; let cmd = cmd_word(false, true, FUNC_BACKPLANE, window_offs, len as u32); self.spi .transaction(|bus| { let bus = unsafe { &mut *bus }; async { bus.write(&[cmd]).await?; // 4-byte response delay. let mut junk = [0; 1]; bus.read(&mut junk).await?; // Read data bus.read(&mut data[..len / 4]).await?; Ok(()) } }) .await .unwrap(); // Advance ptr. addr += len as u32; data = &mut data[len / 4..]; } } async fn bp_write(&mut self, mut addr: u32, mut data: &[u8]) { // It seems the HW force-aligns the addr // to 2 if data.len() >= 2 // to 4 if data.len() >= 4 // To simplify, enforce 4-align for now. assert!(addr % 4 == 0); let mut buf = [0u32; BACKPLANE_MAX_TRANSFER_SIZE / 4]; while !data.is_empty() { // Ensure transfer doesn't cross a window boundary. let window_offs = addr & BACKPLANE_ADDRESS_MASK; let window_remaining = BACKPLANE_WINDOW_SIZE - window_offs as usize; let len = data.len().min(BACKPLANE_MAX_TRANSFER_SIZE).min(window_remaining); slice8_mut(&mut buf)[..len].copy_from_slice(&data[..len]); self.backplane_set_window(addr).await; let cmd = cmd_word(true, true, FUNC_BACKPLANE, window_offs, len as u32); self.spi .transaction(|bus| { let bus = unsafe { &mut *bus }; async { bus.write(&[cmd]).await?; bus.write(&buf[..(len + 3) / 4]).await?; Ok(()) } }) .await .unwrap(); // Advance ptr. addr += len as u32; data = &data[len..]; } } async fn bp_read8(&mut self, addr: u32) -> u8 { self.backplane_readn(addr, 1).await as u8 } async fn bp_write8(&mut self, addr: u32, val: u8) { self.backplane_writen(addr, val as u32, 1).await } async fn bp_read16(&mut self, addr: u32) -> u16 { self.backplane_readn(addr, 2).await as u16 } async fn bp_write16(&mut self, addr: u32, val: u16) { self.backplane_writen(addr, val as u32, 2).await } async fn bp_read32(&mut self, addr: u32) -> u32 { self.backplane_readn(addr, 4).await } async fn bp_write32(&mut self, addr: u32, val: u32) { self.backplane_writen(addr, val, 4).await } async fn backplane_readn(&mut self, addr: u32, len: u32) -> u32 { self.backplane_set_window(addr).await; let mut bus_addr = addr & BACKPLANE_ADDRESS_MASK; if len == 4 { bus_addr |= BACKPLANE_ADDRESS_32BIT_FLAG } self.readn(FUNC_BACKPLANE, bus_addr, len).await } async fn backplane_writen(&mut self, addr: u32, val: u32, len: u32) { self.backplane_set_window(addr).await; let mut bus_addr = addr & BACKPLANE_ADDRESS_MASK; if len == 4 { bus_addr |= BACKPLANE_ADDRESS_32BIT_FLAG } self.writen(FUNC_BACKPLANE, bus_addr, val, len).await } async fn backplane_set_window(&mut self, addr: u32) { let new_window = addr & !BACKPLANE_ADDRESS_MASK; if (new_window >> 24) as u8 != (self.backplane_window >> 24) as u8 { self.write8( FUNC_BACKPLANE, REG_BACKPLANE_BACKPLANE_ADDRESS_HIGH, (new_window >> 24) as u8, ) .await; } if (new_window >> 16) as u8 != (self.backplane_window >> 16) as u8 { self.write8( FUNC_BACKPLANE, REG_BACKPLANE_BACKPLANE_ADDRESS_MID, (new_window >> 16) as u8, ) .await; } if (new_window >> 8) as u8 != (self.backplane_window >> 8) as u8 { self.write8( FUNC_BACKPLANE, REG_BACKPLANE_BACKPLANE_ADDRESS_LOW, (new_window >> 8) as u8, ) .await; } self.backplane_window = new_window; } async fn read8(&mut self, func: u32, addr: u32) -> u8 { self.readn(func, addr, 1).await as u8 } async fn write8(&mut self, func: u32, addr: u32, val: u8) { self.writen(func, addr, val as u32, 1).await } async fn read16(&mut self, func: u32, addr: u32) -> u16 { self.readn(func, addr, 2).await as u16 } async fn write16(&mut self, func: u32, addr: u32, val: u16) { self.writen(func, addr, val as u32, 2).await } async fn read32(&mut self, func: u32, addr: u32) -> u32 { self.readn(func, addr, 4).await } async fn write32(&mut self, func: u32, addr: u32, val: u32) { self.writen(func, addr, val, 4).await } async fn readn(&mut self, func: u32, addr: u32, len: u32) -> u32 { let cmd = cmd_word(false, true, func, addr, len); let mut buf = [0; 1]; self.spi .transaction(|bus| { let bus = unsafe { &mut *bus }; async { bus.write(&[cmd]).await?; if func == FUNC_BACKPLANE { // 4-byte response delay. bus.read(&mut buf).await?; } bus.read(&mut buf).await?; Ok(()) } }) .await .unwrap(); buf[0] } async fn writen(&mut self, func: u32, addr: u32, val: u32, len: u32) { let cmd = cmd_word(true, true, func, addr, len); self.spi .transaction(|bus| { let bus = unsafe { &mut *bus }; async { bus.write(&[cmd, val]).await?; Ok(()) } }) .await .unwrap(); } async fn read32_swapped(&mut self, addr: u32) -> u32 { let cmd = cmd_word(false, true, FUNC_BUS, addr, 4); let mut buf = [0; 1]; self.spi .transaction(|bus| { let bus = unsafe { &mut *bus }; async { bus.write(&[swap16(cmd)]).await?; bus.read(&mut buf).await?; Ok(()) } }) .await .unwrap(); swap16(buf[0]) } async fn write32_swapped(&mut self, addr: u32, val: u32) { let cmd = cmd_word(true, true, FUNC_BUS, addr, 4); self.spi .transaction(|bus| { let bus = unsafe { &mut *bus }; async { bus.write(&[swap16(cmd), swap16(val)]).await?; Ok(()) } }) .await .unwrap(); } } macro_rules! nvram { ($($s:literal,)*) => { concat_bytes!($($s, b"\x00",)* b"\x00\x00") }; } static NVRAM: &'static [u8] = &*nvram!( b"NVRAMRev=$Rev$", b"manfid=0x2d0", b"prodid=0x0727", b"vendid=0x14e4", b"devid=0x43e2", b"boardtype=0x0887", b"boardrev=0x1100", b"boardnum=22", b"macaddr=00:A0:50:b5:59:5e", b"sromrev=11", b"boardflags=0x00404001", b"boardflags3=0x04000000", b"xtalfreq=37400", b"nocrc=1", b"ag0=255", b"aa2g=1", b"ccode=ALL", b"pa0itssit=0x20", b"extpagain2g=0", b"pa2ga0=-168,6649,-778", b"AvVmid_c0=0x0,0xc8", b"cckpwroffset0=5", b"maxp2ga0=84", b"txpwrbckof=6", b"cckbw202gpo=0", b"legofdmbw202gpo=0x66111111", b"mcsbw202gpo=0x77711111", b"propbw202gpo=0xdd", b"ofdmdigfilttype=18", b"ofdmdigfilttypebe=18", b"papdmode=1", b"papdvalidtest=1", b"pacalidx2g=45", b"papdepsoffset=-30", b"papdendidx=58", b"ltecxmux=0", b"ltecxpadnum=0x0102", b"ltecxfnsel=0x44", b"ltecxgcigpio=0x01", b"il0macaddr=00:90:4c:c5:12:38", b"wl0id=0x431b", b"deadman_to=0xffffffff", b"muxenab=0x100", b"spurconfig=0x3", b"glitch_based_crsmin=1", b"btc_mode=1", );