use core::marker::PhantomData; use core::sync::atomic::{fence, Ordering}; use core::task::Waker; use embassy::waitqueue::AtomicWaker; use embassy_cortex_m::peripheral::{PeripheralMutex, PeripheralState, StateStorage}; use embassy_hal_common::unborrow; use embassy_net::{Device, DeviceCapabilities, LinkState, PacketBuf, MTU}; use crate::gpio::sealed::{AFType, Pin as _}; use crate::gpio::{AnyPin, Speed}; use crate::pac::{ETH, RCC, SYSCFG}; use crate::Unborrow; mod descriptors; use descriptors::DescriptorRing; use super::*; pub struct State<'d, T: Instance, const TX: usize, const RX: usize>(StateStorage>); impl<'d, T: Instance, const TX: usize, const RX: usize> State<'d, T, TX, RX> { pub fn new() -> Self { Self(StateStorage::new()) } } pub struct Ethernet<'d, T: Instance, P: PHY, const TX: usize, const RX: usize> { state: PeripheralMutex<'d, Inner<'d, T, TX, RX>>, pins: [AnyPin; 9], _phy: P, clock_range: u8, phy_addr: u8, mac_addr: [u8; 6], } macro_rules! config_pins { ($($pin:ident),*) => { // NOTE(unsafe) Exclusive access to the registers critical_section::with(|_| { $( $pin.set_as_af($pin.af_num(), AFType::OutputPushPull); $pin.set_speed(Speed::VeryHigh); )* }) }; } impl<'d, T: Instance, P: PHY, const TX: usize, const RX: usize> Ethernet<'d, T, P, TX, RX> { /// safety: the returned instance is not leak-safe pub unsafe fn new( state: &'d mut State<'d, T, TX, RX>, peri: impl Unborrow + 'd, interrupt: impl Unborrow + 'd, ref_clk: impl Unborrow> + 'd, mdio: impl Unborrow> + 'd, mdc: impl Unborrow> + 'd, crs: impl Unborrow> + 'd, rx_d0: impl Unborrow> + 'd, rx_d1: impl Unborrow> + 'd, tx_d0: impl Unborrow> + 'd, tx_d1: impl Unborrow> + 'd, tx_en: impl Unborrow> + 'd, phy: P, mac_addr: [u8; 6], phy_addr: u8, ) -> Self { unborrow!(interrupt, ref_clk, mdio, mdc, crs, rx_d0, rx_d1, tx_d0, tx_d1, tx_en); // Enable the necessary Clocks // NOTE(unsafe) We have exclusive access to the registers critical_section::with(|_| { RCC.apb4enr().modify(|w| w.set_syscfgen(true)); RCC.ahb1enr().modify(|w| { w.set_eth1macen(true); w.set_eth1txen(true); w.set_eth1rxen(true); }); // RMII SYSCFG.pmcr().modify(|w| w.set_epis(0b100)); }); config_pins!(ref_clk, mdio, mdc, crs, rx_d0, rx_d1, tx_d0, tx_d1, tx_en); // NOTE(unsafe) We are ourselves not leak-safe. let state = PeripheralMutex::new(interrupt, &mut state.0, || Inner::new(peri)); // NOTE(unsafe) We have exclusive access to the registers let dma = ETH.ethernet_dma(); let mac = ETH.ethernet_mac(); let mtl = ETH.ethernet_mtl(); // Reset and wait dma.dmamr().modify(|w| w.set_swr(true)); while dma.dmamr().read().swr() {} mac.maccr().modify(|w| { w.set_ipg(0b000); // 96 bit times w.set_acs(true); w.set_fes(true); w.set_dm(true); // TODO: Carrier sense ? ECRSFD }); // Note: Writing to LR triggers synchronisation of both LR and HR into the MAC core, // so the LR write must happen after the HR write. mac.maca0hr() .modify(|w| w.set_addrhi(u16::from(mac_addr[4]) | (u16::from(mac_addr[5]) << 8))); mac.maca0lr().write(|w| { w.set_addrlo( u32::from(mac_addr[0]) | (u32::from(mac_addr[1]) << 8) | (u32::from(mac_addr[2]) << 16) | (u32::from(mac_addr[3]) << 24), ) }); mac.macqtx_fcr().modify(|w| w.set_pt(0x100)); mtl.mtlrx_qomr().modify(|w| w.set_rsf(true)); mtl.mtltx_qomr().modify(|w| w.set_tsf(true)); dma.dmactx_cr().modify(|w| w.set_txpbl(1)); // 32 ? dma.dmacrx_cr().modify(|w| { w.set_rxpbl(1); // 32 ? w.set_rbsz(MTU as u16); }); // NOTE(unsafe) We got the peripheral singleton, which means that `rcc::init` was called let hclk = crate::rcc::get_freqs().ahb1; let hclk_mhz = hclk.0 / 1_000_000; // Set the MDC clock frequency in the range 1MHz - 2.5MHz let clock_range = match hclk_mhz { 0..=34 => 2, // Divide by 16 35..=59 => 3, // Divide by 26 60..=99 => 0, // Divide by 42 100..=149 => 1, // Divide by 62 150..=249 => 4, // Divide by 102 250..=310 => 5, // Divide by 124 _ => { panic!("HCLK results in MDC clock > 2.5MHz even for the highest CSR clock divider") } }; let pins = [ ref_clk.degrade(), mdio.degrade(), mdc.degrade(), crs.degrade(), rx_d0.degrade(), rx_d1.degrade(), tx_d0.degrade(), tx_d1.degrade(), tx_en.degrade(), ]; let mut this = Self { state, pins, _phy: phy, clock_range, phy_addr, mac_addr, }; this.state.with(|s| { s.desc_ring.init(); fence(Ordering::SeqCst); let mac = ETH.ethernet_mac(); let mtl = ETH.ethernet_mtl(); let dma = ETH.ethernet_dma(); mac.maccr().modify(|w| { w.set_re(true); w.set_te(true); }); mtl.mtltx_qomr().modify(|w| w.set_ftq(true)); dma.dmactx_cr().modify(|w| w.set_st(true)); dma.dmacrx_cr().modify(|w| w.set_sr(true)); // Enable interrupts dma.dmacier().modify(|w| { w.set_nie(true); w.set_rie(true); w.set_tie(true); }); }); P::phy_reset(&mut this); P::phy_init(&mut this); this } } unsafe impl<'d, T: Instance, P: PHY, const TX: usize, const RX: usize> StationManagement for Ethernet<'d, T, P, TX, RX> { fn smi_read(&mut self, reg: u8) -> u16 { // NOTE(unsafe) These registers aren't used in the interrupt and we have `&mut self` unsafe { let mac = ETH.ethernet_mac(); mac.macmdioar().modify(|w| { w.set_pa(self.phy_addr); w.set_rda(reg); w.set_goc(0b11); // read w.set_cr(self.clock_range); w.set_mb(true); }); while mac.macmdioar().read().mb() {} mac.macmdiodr().read().md() } } fn smi_write(&mut self, reg: u8, val: u16) { // NOTE(unsafe) These registers aren't used in the interrupt and we have `&mut self` unsafe { let mac = ETH.ethernet_mac(); mac.macmdiodr().write(|w| w.set_md(val)); mac.macmdioar().modify(|w| { w.set_pa(self.phy_addr); w.set_rda(reg); w.set_goc(0b01); // write w.set_cr(self.clock_range); w.set_mb(true); }); while mac.macmdioar().read().mb() {} } } } impl<'d, T: Instance, P: PHY, const TX: usize, const RX: usize> Device for Ethernet<'d, T, P, TX, RX> { fn is_transmit_ready(&mut self) -> bool { self.state.with(|s| s.desc_ring.tx.available()) } fn transmit(&mut self, pkt: PacketBuf) { self.state.with(|s| unwrap!(s.desc_ring.tx.transmit(pkt))); } fn receive(&mut self) -> Option { self.state.with(|s| s.desc_ring.rx.pop_packet()) } fn register_waker(&mut self, waker: &Waker) { WAKER.register(waker); } fn capabilities(&self) -> DeviceCapabilities { let mut caps = DeviceCapabilities::default(); caps.max_transmission_unit = MTU; caps.max_burst_size = Some(TX.min(RX)); caps } fn link_state(&mut self) -> LinkState { if P::poll_link(self) { LinkState::Up } else { LinkState::Down } } fn ethernet_address(&self) -> [u8; 6] { self.mac_addr } } impl<'d, T: Instance, P: PHY, const TX: usize, const RX: usize> Drop for Ethernet<'d, T, P, TX, RX> { fn drop(&mut self) { // NOTE(unsafe) We have `&mut self` and the interrupt doesn't use this registers unsafe { let dma = ETH.ethernet_dma(); let mac = ETH.ethernet_mac(); let mtl = ETH.ethernet_mtl(); // Disable the TX DMA and wait for any previous transmissions to be completed dma.dmactx_cr().modify(|w| w.set_st(false)); while { let txqueue = mtl.mtltx_qdr().read(); txqueue.trcsts() == 0b01 || txqueue.txqsts() } {} // Disable MAC transmitter and receiver mac.maccr().modify(|w| { w.set_re(false); w.set_te(false); }); // Wait for previous receiver transfers to be completed and then disable the RX DMA while { let rxqueue = mtl.mtlrx_qdr().read(); rxqueue.rxqsts() != 0b00 || rxqueue.prxq() != 0 } {} dma.dmacrx_cr().modify(|w| w.set_sr(false)); } // NOTE(unsafe) Exclusive access to the regs critical_section::with(|_| unsafe { for pin in self.pins.iter_mut() { pin.set_as_disconnected(); } }) } } //---------------------------------------------------------------------- struct Inner<'d, T: Instance, const TX: usize, const RX: usize> { _peri: PhantomData<&'d mut T>, desc_ring: DescriptorRing, } impl<'d, T: Instance, const TX: usize, const RX: usize> Inner<'d, T, TX, RX> { pub fn new(_peri: impl Unborrow + 'd) -> Self { Self { _peri: PhantomData, desc_ring: DescriptorRing::new(), } } } impl<'d, T: Instance, const TX: usize, const RX: usize> PeripheralState for Inner<'d, T, TX, RX> { type Interrupt = crate::interrupt::ETH; fn on_interrupt(&mut self) { unwrap!(self.desc_ring.tx.on_interrupt()); self.desc_ring.rx.on_interrupt(); WAKER.wake(); // TODO: Check and clear more flags unsafe { let dma = ETH.ethernet_dma(); dma.dmacsr().modify(|w| { w.set_ti(true); w.set_ri(true); w.set_nis(true); }); // Delay two peripheral's clock dma.dmacsr().read(); dma.dmacsr().read(); } } } static WAKER: AtomicWaker = AtomicWaker::new();