use core::convert::TryInto; use core::ptr::write_volatile; use core::sync::atomic::{fence, Ordering}; use super::{FlashSector, FLASH_BASE, WRITE_SIZE}; use crate::flash::Error; use crate::pac; const SMALL_SECTOR_SIZE: u32 = 32 * 1024; const MEDIUM_SECTOR_SIZE: u32 = 128 * 1024; const LARGE_SECTOR_SIZE: u32 = 256 * 1024; pub(crate) unsafe fn lock() { pac::FLASH.cr().modify(|w| w.set_lock(true)); } pub(crate) unsafe fn unlock() { pac::FLASH.keyr().write(|w| w.set_key(0x4567_0123)); pac::FLASH.keyr().write(|w| w.set_key(0xCDEF_89AB)); } pub(crate) unsafe fn begin_write() { assert_eq!(0, WRITE_SIZE % 4); pac::FLASH.cr().write(|w| { w.set_pg(true); w.set_psize(pac::flash::vals::Psize::PSIZE32); }); } pub(crate) unsafe fn end_write() { pac::FLASH.cr().write(|w| w.set_pg(false)); } pub(crate) unsafe fn blocking_write(start_address: u32, buf: &[u8; WRITE_SIZE]) -> Result<(), Error> { let mut address = start_address; for val in buf.chunks(4) { write_volatile(address as *mut u32, u32::from_le_bytes(val.try_into().unwrap())); address += val.len() as u32; // prevents parallelism errors fence(Ordering::SeqCst); } blocking_wait_ready() } pub(crate) unsafe fn blocking_erase_sector(sector: &FlashSector) -> Result<(), Error> { pac::FLASH.cr().modify(|w| { w.set_ser(true); w.set_snb(sector.index) }); pac::FLASH.cr().modify(|w| { w.set_strt(true); }); let ret: Result<(), Error> = blocking_wait_ready(); pac::FLASH.cr().modify(|w| w.set_ser(false)); clear_all_err(); ret } pub(crate) unsafe fn clear_all_err() { pac::FLASH.sr().modify(|w| { if w.erserr() { w.set_erserr(true); } if w.pgperr() { w.set_pgperr(true); } if w.pgaerr() { w.set_pgaerr(true); } if w.wrperr() { w.set_wrperr(true); } if w.eop() { w.set_eop(true); } }); } unsafe fn blocking_wait_ready() -> Result<(), Error> { loop { let sr = pac::FLASH.sr().read(); if !sr.bsy() { if sr.erserr() { return Err(Error::Seq); } if sr.pgperr() { return Err(Error::Parallelism); } if sr.pgaerr() { return Err(Error::Unaligned); } if sr.wrperr() { return Err(Error::Protected); } return Ok(()); } } } pub(crate) fn get_sector(address: u32) -> FlashSector { // First 4 sectors are 32KB, then one 128KB, and rest are 256KB let offset = address - FLASH_BASE as u32; match offset / LARGE_SECTOR_SIZE { 0 => { if offset < 4 * SMALL_SECTOR_SIZE { let small_sector_index = offset / SMALL_SECTOR_SIZE; FlashSector { index: small_sector_index as u8, start: FLASH_BASE as u32 + small_sector_index * SMALL_SECTOR_SIZE, size: SMALL_SECTOR_SIZE, } } else { FlashSector { index: 4, start: FLASH_BASE as u32 + 4 * SMALL_SECTOR_SIZE, size: MEDIUM_SECTOR_SIZE, } } } i => { let large_sector_index = i - 1; FlashSector { index: (5 + large_sector_index) as u8, start: FLASH_BASE as u32 + 4 * SMALL_SECTOR_SIZE + MEDIUM_SECTOR_SIZE + large_sector_index * LARGE_SECTOR_SIZE, size: LARGE_SECTOR_SIZE, } } } } #[cfg(test)] mod tests { use super::*; #[test] fn can_get_sector() { let assert_sector = |index: u8, start: u32, size: u32, addr: u32| { assert_eq!(FlashSector { index, start, size }, get_sector(addr)) }; assert_sector(0, 0x0800_0000, SMALL_SECTOR_SIZE, 0x0800_0000); assert_sector(0, 0x0800_0000, SMALL_SECTOR_SIZE, 0x0800_7FFF); assert_sector(3, 0x0801_8000, SMALL_SECTOR_SIZE, 0x0801_8000); assert_sector(3, 0x0801_8000, SMALL_SECTOR_SIZE, 0x0801_FFFF); assert_sector(4, 0x0802_0000, MEDIUM_SECTOR_SIZE, 0x0802_0000); assert_sector(4, 0x0802_0000, MEDIUM_SECTOR_SIZE, 0x0803_FFFF); assert_sector(5, 0x0804_0000, LARGE_SECTOR_SIZE, 0x0804_0000); assert_sector(5, 0x0804_0000, LARGE_SECTOR_SIZE, 0x0807_FFFF); assert_sector(7, 0x080C_0000, LARGE_SECTOR_SIZE, 0x080C_0000); assert_sector(7, 0x080C_0000, LARGE_SECTOR_SIZE, 0x080F_FFFF); } }