use core::convert::TryInto; use core::ptr::write_volatile; use atomic_polyfill::{fence, Ordering}; use super::{FlashSector, BANK1_REGION, FLASH_REGIONS, WRITE_SIZE}; use crate::flash::Error; use crate::pac; const fn is_dual_bank() -> bool { FLASH_REGIONS.len() == 2 } pub(crate) unsafe fn lock() { pac::FLASH.bank(0).cr().modify(|w| w.set_lock(true)); if is_dual_bank() { pac::FLASH.bank(1).cr().modify(|w| w.set_lock(true)); } } pub(crate) unsafe fn unlock() { pac::FLASH.bank(0).keyr().write(|w| w.set_keyr(0x4567_0123)); pac::FLASH.bank(0).keyr().write(|w| w.set_keyr(0xCDEF_89AB)); if is_dual_bank() { pac::FLASH.bank(1).keyr().write(|w| w.set_keyr(0x4567_0123)); pac::FLASH.bank(1).keyr().write(|w| w.set_keyr(0xCDEF_89AB)); } } pub(crate) unsafe fn begin_write() { assert_eq!(0, WRITE_SIZE % 4); } pub(crate) unsafe fn end_write() {} pub(crate) unsafe fn blocking_write(start_address: u32, buf: &[u8; WRITE_SIZE]) -> Result<(), Error> { // We cannot have the write setup sequence in begin_write as it depends on the address let bank = if start_address < BANK1_REGION.end() { pac::FLASH.bank(0) } else { pac::FLASH.bank(1) }; bank.cr().write(|w| { w.set_pg(true); w.set_psize(2); // 32 bits at once }); cortex_m::asm::isb(); cortex_m::asm::dsb(); fence(Ordering::SeqCst); let mut res = None; let mut address = start_address; for val in buf.chunks(4) { write_volatile(address as *mut u32, u32::from_le_bytes(val.try_into().unwrap())); address += val.len() as u32; res = Some(blocking_wait_ready(bank)); bank.sr().modify(|w| { if w.eop() { w.set_eop(true); } }); if res.unwrap().is_err() { break; } } bank.cr().write(|w| w.set_pg(false)); cortex_m::asm::isb(); cortex_m::asm::dsb(); fence(Ordering::SeqCst); res.unwrap() } pub(crate) unsafe fn blocking_erase_sector(sector: &FlashSector) -> Result<(), Error> { let bank = pac::FLASH.bank(if sector.index >= 8 { 1 } else { 0 }); let sector = sector.index % 8; bank.cr().modify(|w| { w.set_ser(true); w.set_snb(sector) }); bank.cr().modify(|w| { w.set_start(true); }); let ret: Result<(), Error> = blocking_wait_ready(bank); bank.cr().modify(|w| w.set_ser(false)); bank_clear_all_err(bank); ret } pub(crate) unsafe fn clear_all_err() { bank_clear_all_err(pac::FLASH.bank(0)); bank_clear_all_err(pac::FLASH.bank(1)); } unsafe fn bank_clear_all_err(bank: pac::flash::Bank) { bank.sr().modify(|w| { if w.wrperr() { w.set_wrperr(true); } if w.pgserr() { w.set_pgserr(true); } if w.strberr() { // single address was written multiple times, can be ignored w.set_strberr(true); } if w.incerr() { // writing to a different address when programming 256 bit word was not finished w.set_incerr(true); } if w.operr() { w.set_operr(true); } if w.sneccerr1() { // single ECC error w.set_sneccerr1(true); } if w.dbeccerr() { // double ECC error w.set_dbeccerr(true); } if w.rdperr() { w.set_rdperr(true); } if w.rdserr() { w.set_rdserr(true); } }); } unsafe fn blocking_wait_ready(bank: pac::flash::Bank) -> Result<(), Error> { loop { let sr = bank.sr().read(); if !sr.bsy() && !sr.qw() { if sr.wrperr() { return Err(Error::Protected); } if sr.pgserr() { error!("pgserr"); return Err(Error::Seq); } if sr.incerr() { // writing to a different address when programming 256 bit word was not finished error!("incerr"); return Err(Error::Seq); } if sr.operr() { return Err(Error::Prog); } if sr.sneccerr1() { // single ECC error return Err(Error::Prog); } if sr.dbeccerr() { // double ECC error return Err(Error::Prog); } if sr.rdperr() { return Err(Error::Protected); } if sr.rdserr() { return Err(Error::Protected); } return Ok(()); } } } pub(crate) fn get_sector(address: u32) -> FlashSector { let sector_size = BANK1_REGION.erase_size; let index = address / sector_size; FlashSector { index: index as u8, start: BANK1_REGION.base + index * sector_size, size: sector_size, } }