#![no_std] #![no_main] #![feature(type_alias_impl_trait, concat_bytes)] // This mod MUST go first, so that the others see its macros. pub(crate) mod fmt; use core::slice; use embassy::time::{block_for, Duration, Timer}; use embassy::util::yield_now; use embassy_rp::gpio::{Flex, Output, Pin}; fn swap16(x: u32) -> u32 { (x & 0xFF00FF00) >> 8 | (x & 0x00FF00FF) << 8 } fn cmd_word(write: bool, incr: bool, func: u32, addr: u32, len: u32) -> u32 { (write as u32) << 31 | (incr as u32) << 30 | (func & 0b11) << 28 | (addr & 0x1FFFF) << 11 | (len & 0x7FF) } const FUNC_BUS: u32 = 0; const FUNC_BACKPLANE: u32 = 1; const FUNC_WLAN: u32 = 2; const FUNC_BT: u32 = 3; const REG_BUS_CTRL: u32 = 0x0; const REG_BUS_INTERRUPT: u32 = 0x04; // 16 bits - Interrupt status const REG_BUS_INTERRUPT_ENABLE: u32 = 0x06; // 16 bits - Interrupt mask const REG_BUS_STATUS: u32 = 0x8; const REG_BUS_FEEDBEAD: u32 = 0x14; const REG_BUS_TEST: u32 = 0x18; const REG_BUS_RESP_DELAY: u32 = 0x1c; // SPI_STATUS_REGISTER bits const STATUS_DATA_NOT_AVAILABLE: u32 = 0x00000001; const STATUS_UNDERFLOW: u32 = 0x00000002; const STATUS_OVERFLOW: u32 = 0x00000004; const STATUS_F2_INTR: u32 = 0x00000008; const STATUS_F3_INTR: u32 = 0x00000010; const STATUS_F2_RX_READY: u32 = 0x00000020; const STATUS_F3_RX_READY: u32 = 0x00000040; const STATUS_HOST_CMD_DATA_ERR: u32 = 0x00000080; const STATUS_F2_PKT_AVAILABLE: u32 = 0x00000100; const STATUS_F2_PKT_LEN_MASK: u32 = 0x000FFE00; const STATUS_F2_PKT_LEN_SHIFT: u32 = 9; const STATUS_F3_PKT_AVAILABLE: u32 = 0x00100000; const STATUS_F3_PKT_LEN_MASK: u32 = 0xFFE00000; const STATUS_F3_PKT_LEN_SHIFT: u32 = 21; const REG_BACKPLANE_GPIO_SELECT: u32 = 0x10005; const REG_BACKPLANE_GPIO_OUTPUT: u32 = 0x10006; const REG_BACKPLANE_GPIO_ENABLE: u32 = 0x10007; const REG_BACKPLANE_FUNCTION2_WATERMARK: u32 = 0x10008; const REG_BACKPLANE_DEVICE_CONTROL: u32 = 0x10009; const REG_BACKPLANE_BACKPLANE_ADDRESS_LOW: u32 = 0x1000A; const REG_BACKPLANE_BACKPLANE_ADDRESS_MID: u32 = 0x1000B; const REG_BACKPLANE_BACKPLANE_ADDRESS_HIGH: u32 = 0x1000C; const REG_BACKPLANE_FRAME_CONTROL: u32 = 0x1000D; const REG_BACKPLANE_CHIP_CLOCK_CSR: u32 = 0x1000E; const REG_BACKPLANE_PULL_UP: u32 = 0x1000F; const REG_BACKPLANE_READ_FRAME_BC_LOW: u32 = 0x1001B; const REG_BACKPLANE_READ_FRAME_BC_HIGH: u32 = 0x1001C; const REG_BACKPLANE_WAKEUP_CTRL: u32 = 0x1001E; const REG_BACKPLANE_SLEEP_CSR: u32 = 0x1001F; const BACKPLANE_WINDOW_SIZE: usize = 0x8000; const BACKPLANE_ADDRESS_MASK: u32 = 0x7FFF; const BACKPLANE_ADDRESS_32BIT_FLAG: u32 = 0x08000; const BACKPLANE_MAX_TRANSFER_SIZE: usize = 64; const AI_IOCTRL_OFFSET: u32 = 0x408; const AI_IOCTRL_BIT_FGC: u8 = 0x0002; const AI_IOCTRL_BIT_CLOCK_EN: u8 = 0x0001; const AI_IOCTRL_BIT_CPUHALT: u8 = 0x0020; const AI_RESETCTRL_OFFSET: u32 = 0x800; const AI_RESETCTRL_BIT_RESET: u8 = 1; const AI_RESETSTATUS_OFFSET: u32 = 0x804; const TEST_PATTERN: u32 = 0x12345678; const FEEDBEAD: u32 = 0xFEEDBEAD; // SPI_INTERRUPT_REGISTER and SPI_INTERRUPT_ENABLE_REGISTER Bits const IRQ_DATA_UNAVAILABLE: u16 = 0x0001; // Requested data not available; Clear by writing a "1" const IRQ_F2_F3_FIFO_RD_UNDERFLOW: u16 = 0x0002; const IRQ_F2_F3_FIFO_WR_OVERFLOW: u16 = 0x0004; const IRQ_COMMAND_ERROR: u16 = 0x0008; // Cleared by writing 1 const IRQ_DATA_ERROR: u16 = 0x0010; // Cleared by writing 1 const IRQ_F2_PACKET_AVAILABLE: u16 = 0x0020; const IRQ_F3_PACKET_AVAILABLE: u16 = 0x0040; const IRQ_F1_OVERFLOW: u16 = 0x0080; // Due to last write. Bkplane has pending write requests const IRQ_MISC_INTR0: u16 = 0x0100; const IRQ_MISC_INTR1: u16 = 0x0200; const IRQ_MISC_INTR2: u16 = 0x0400; const IRQ_MISC_INTR3: u16 = 0x0800; const IRQ_MISC_INTR4: u16 = 0x1000; const IRQ_F1_INTR: u16 = 0x2000; const IRQ_F2_INTR: u16 = 0x4000; const IRQ_F3_INTR: u16 = 0x8000; #[derive(Clone, Copy, PartialEq, Eq)] enum Core { WLAN = 0, SOCSRAM = 1, SDIOD = 2, } impl Core { fn base_addr(&self) -> u32 { match self { Self::WLAN => CHIP.arm_core_base_address, Self::SOCSRAM => CHIP.socsram_wrapper_base_address, Self::SDIOD => CHIP.sdiod_core_base_address, } } } struct Chip { arm_core_base_address: u32, socsram_base_address: u32, socsram_wrapper_base_address: u32, sdiod_core_base_address: u32, pmu_base_address: u32, chip_ram_size: u32, atcm_ram_base_address: u32, socram_srmem_size: u32, chanspec_band_mask: u32, chanspec_band_2g: u32, chanspec_band_5g: u32, chanspec_band_shift: u32, chanspec_bw_10: u32, chanspec_bw_20: u32, chanspec_bw_40: u32, chanspec_bw_mask: u32, chanspec_bw_shift: u32, chanspec_ctl_sb_lower: u32, chanspec_ctl_sb_upper: u32, chanspec_ctl_sb_none: u32, chanspec_ctl_sb_mask: u32, } const WRAPPER_REGISTER_OFFSET: u32 = 0x100000; // Data for CYW43439 const CHIP: Chip = Chip { arm_core_base_address: 0x18003000 + WRAPPER_REGISTER_OFFSET, socsram_base_address: 0x18004000, socsram_wrapper_base_address: 0x18004000 + WRAPPER_REGISTER_OFFSET, sdiod_core_base_address: 0x18002000, pmu_base_address: 0x18000000, chip_ram_size: 512 * 1024, atcm_ram_base_address: 0, socram_srmem_size: 64 * 1024, chanspec_band_mask: 0xc000, chanspec_band_2g: 0x0000, chanspec_band_5g: 0xc000, chanspec_band_shift: 14, chanspec_bw_10: 0x0800, chanspec_bw_20: 0x1000, chanspec_bw_40: 0x1800, chanspec_bw_mask: 0x3800, chanspec_bw_shift: 11, chanspec_ctl_sb_lower: 0x0000, chanspec_ctl_sb_upper: 0x0100, chanspec_ctl_sb_none: 0x0000, chanspec_ctl_sb_mask: 0x0700, }; #[derive(Clone, Copy)] #[repr(C)] struct SdpcmHeader { len: u16, len_inv: u16, /// Rx/Tx sequence number sequence: u8, /// 4 MSB Channel number, 4 LSB arbitrary flag channel_and_flags: u8, /// Length of next data frame, reserved for Tx next_length: u8, /// Data offset header_length: u8, /// Flow control bits, reserved for Tx wireless_flow_control: u8, /// Maximum Sequence number allowed by firmware for Tx bus_data_credit: u8, /// Reserved reserved: [u8; 2], } #[derive(Clone, Copy)] #[repr(C)] struct CdcHeader { cmd: u32, out_len: u16, in_len: u16, flags: u16, id: u16, status: u32, } #[derive(Clone, Copy)] #[repr(C)] struct BdcHeader { flags: u8, /// 802.1d Priority (low 3 bits) priority: u8, flags2: u8, /// Offset from end of BDC header to packet data, in 4-uint8_t words. Leaves room for optional headers. data_offset: u8, } macro_rules! impl_bytes { ($t:ident) => { impl $t { const SIZE: usize = core::mem::size_of::(); pub fn to_bytes(&self) -> [u8; Self::SIZE] { unsafe { core::mem::transmute(*self) } } pub fn from_bytes(bytes: &[u8; Self::SIZE]) -> Self { unsafe { core::mem::transmute(*bytes) } } } }; } impl_bytes!(SdpcmHeader); impl_bytes!(CdcHeader); impl_bytes!(BdcHeader); pub struct Driver<'a, PWR: Pin, CS: Pin, CLK: Pin, DIO: Pin> { pwr: Output<'a, PWR>, /// SPI chip-select. cs: Output<'a, CS>, /// SPI clock clk: Output<'a, CLK>, /// 4 signals, all in one!! /// - SPI MISO /// - SPI MOSI /// - IRQ /// - strap to set to gSPI mode on boot. dio: Flex<'a, DIO>, backplane_window: u32, } impl<'a, PWR: Pin, CS: Pin, CLK: Pin, DIO: Pin> Driver<'a, PWR, CS, CLK, DIO> { pub fn new(pwr: Output<'a, PWR>, cs: Output<'a, CS>, clk: Output<'a, CLK>, dio: Flex<'a, DIO>) -> Self { Self { pwr, cs, clk, dio, backplane_window: 0xAAAA_AAAA, } } pub async fn init(&mut self) { // Set strap to select gSPI mode. self.dio.set_as_output(); self.dio.set_low(); // Reset self.pwr.set_low(); Timer::after(Duration::from_millis(20)).await; self.pwr.set_high(); Timer::after(Duration::from_millis(250)).await; info!("waiting for ping..."); while self.read32_swapped(REG_BUS_FEEDBEAD) != FEEDBEAD {} info!("ping ok"); self.write32_swapped(0x18, TEST_PATTERN); let val = self.read32_swapped(REG_BUS_TEST); assert_eq!(val, TEST_PATTERN); // 32bit, big endian. self.write32_swapped(REG_BUS_CTRL, 0x00010033); let val = self.read32(FUNC_BUS, REG_BUS_FEEDBEAD); assert_eq!(val, FEEDBEAD); let val = self.read32(FUNC_BUS, REG_BUS_TEST); assert_eq!(val, TEST_PATTERN); // No response delay in any of the funcs. // seems to break backplane??? eat the 4-byte delay instead, that's what the vendor drivers do... //self.write32(FUNC_BUS, REG_BUS_RESP_DELAY, 0); // Init ALP (no idea what that stands for) clock self.write8(FUNC_BACKPLANE, REG_BACKPLANE_CHIP_CLOCK_CSR, 0x08); info!("waiting for clock..."); while self.read8(FUNC_BACKPLANE, REG_BACKPLANE_CHIP_CLOCK_CSR) & 0x40 == 0 {} info!("clock ok"); let chip_id = self.bp_read16(0x1800_0000); info!("chip ID: {}", chip_id); // Upload firmware. self.core_disable(Core::WLAN); self.core_reset(Core::SOCSRAM); self.bp_write32(CHIP.socsram_base_address + 0x10, 3); self.bp_write32(CHIP.socsram_base_address + 0x44, 0); // I'm flashing the firmwares independently at hardcoded addresses, instead of baking them // into the program with `include_bytes!` or similar, so that flashing the program stays fast. // // Flash them like this, also don't forget to update the lengths below if you change them!. // // probe-rs-cli download 43439A0.bin --format bin --chip RP2040 --base-address 0x10100000 // probe-rs-cli download 43439A0.clm_blob --format bin --chip RP2040 --base-address 0x10140000 let fw = unsafe { slice::from_raw_parts(0x10100000 as *const u8, 224190) }; let clm = unsafe { slice::from_raw_parts(0x10140000 as *const u8, 4752) }; let ram_addr = CHIP.atcm_ram_base_address; info!("loading fw"); self.bp_write(ram_addr, fw); info!("verifying fw"); let mut buf = [0; 1024]; for (i, chunk) in fw.chunks(1024).enumerate() { let buf = &mut buf[..chunk.len()]; self.bp_read(ram_addr + i as u32 * 1024, buf); assert_eq!(chunk, buf); } info!("loading nvram"); // Round up to 4 bytes. let nvram_len = (NVRAM.len() + 3) / 4 * 4; self.bp_write(ram_addr + CHIP.chip_ram_size - 4 - nvram_len as u32, NVRAM); let nvram_len_words = nvram_len as u32 / 4; let nvram_len_magic = (!nvram_len_words << 16) | nvram_len_words; self.bp_write32(ram_addr + CHIP.chip_ram_size - 4, nvram_len_magic); // Start core! info!("starting up core..."); self.core_reset(Core::WLAN); assert!(self.core_is_up(Core::WLAN)); while self.read8(FUNC_BACKPLANE, REG_BACKPLANE_CHIP_CLOCK_CSR) & 0x80 == 0 {} // "Set up the interrupt mask and enable interrupts" self.bp_write32(CHIP.sdiod_core_base_address + 0x24, 0xF0); // "Lower F2 Watermark to avoid DMA Hang in F2 when SD Clock is stopped." // Sounds scary... self.write8(FUNC_BACKPLANE, REG_BACKPLANE_FUNCTION2_WATERMARK, 32); // wait for wifi startup info!("waiting for wifi init..."); while self.read32(FUNC_BUS, REG_BUS_STATUS) & STATUS_F2_RX_READY == 0 {} // Some random configs related to sleep. // I think they're not needed if we don't want sleep...??? /* let mut val = self.read8(FUNC_BACKPLANE, REG_BACKPLANE_WAKEUP_CTRL); val |= 0x02; // WAKE_TILL_HT_AVAIL self.write8(FUNC_BACKPLANE, REG_BACKPLANE_WAKEUP_CTRL, val); self.write8(FUNC_BUS, 0xF0, 0x08); // SDIOD_CCCR_BRCM_CARDCAP.CMD_NODEC = 1 self.write8(FUNC_BACKPLANE, REG_BACKPLANE_CHIP_CLOCK_CSR, 0x02); // SBSDIO_FORCE_HT let mut val = self.read8(FUNC_BACKPLANE, REG_BACKPLANE_SLEEP_CSR); val |= 0x01; // SBSDIO_SLPCSR_KEEP_SDIO_ON self.write8(FUNC_BACKPLANE, REG_BACKPLANE_SLEEP_CSR, val); // clear pulls self.write8(FUNC_BACKPLANE, REG_BACKPLANE_PULL_UP, 0); let _ = self.read8(FUNC_BACKPLANE, REG_BACKPLANE_PULL_UP); */ let mut buf = [0; 8 + 12 + 1024]; buf[0..8].copy_from_slice(b"clmload\x00"); buf[8..20].copy_from_slice(b"\x02\x10\x02\x00\x00\x04\x00\x00\x00\x00\x00\x00"); buf[20..].copy_from_slice(&clm[..1024]); self.send_ioctl(2, 263, 0, &buf); info!("init done "); let mut old_irq = 0; let mut buf = [0; 2048]; loop { let irq = self.read16(FUNC_BUS, REG_BUS_INTERRUPT); if irq != old_irq { info!("irq: {:04x}", irq); } old_irq = irq; if irq & IRQ_F2_PACKET_AVAILABLE != 0 { let mut status = 0xFFFF_FFFF; while status == 0xFFFF_FFFF { status = self.read32(FUNC_BUS, REG_BUS_STATUS); } if status & STATUS_F2_PKT_AVAILABLE != 0 { let len = (status & STATUS_F2_PKT_LEN_MASK) >> STATUS_F2_PKT_LEN_SHIFT; info!("got len {}", len); let cmd = cmd_word(false, true, FUNC_WLAN, 0, len); self.cs.set_low(); self.spi_write(&cmd.to_le_bytes()); self.spi_read(&mut buf[..len as usize]); // pad to 32bit let mut junk = [0; 4]; if len % 4 != 0 { self.spi_read(&mut junk[..(4 - len as usize % 4)]); } self.cs.set_high(); info!("rxd packet {:02x}", &buf[..len as usize]); self.rx(&buf[..len as usize]); } } yield_now().await; } } fn rx(&mut self, packet: &[u8]) { if packet.len() < SdpcmHeader::SIZE { warn!("packet too short, len={}", packet.len()); return; } let sdpcm_header = SdpcmHeader::from_bytes(packet[..SdpcmHeader::SIZE].try_into().unwrap()); if sdpcm_header.len != !sdpcm_header.len_inv { warn!("len inv mismatch"); return; } if sdpcm_header.len as usize != packet.len() { // TODO: is this guaranteed?? warn!("len from header doesn't match len from spi"); return; } let channel = sdpcm_header.channel_and_flags & 0x0f; match channel { 0 => { if packet.len() < SdpcmHeader::SIZE + CdcHeader::SIZE { warn!("control packet too short, len={}", packet.len()); return; } let cdc_header = CdcHeader::from_bytes(packet[SdpcmHeader::SIZE..][..CdcHeader::SIZE].try_into().unwrap()); // TODO check cdc_header.id matches // TODO check status } _ => {} } } fn send_ioctl(&mut self, kind: u32, cmd: u32, iface: u32, data: &[u8]) { let mut buf = [0; 2048]; let total_len = SdpcmHeader::SIZE + CdcHeader::SIZE + data.len(); let sdpcm_header = SdpcmHeader { len: total_len as u16, len_inv: !total_len as u16, sequence: 0x02, // todo channel_and_flags: 0, // control channle next_length: 0, header_length: SdpcmHeader::SIZE as _, wireless_flow_control: 0, bus_data_credit: 0, reserved: [0, 0], }; let cdc_header = CdcHeader { cmd: cmd, out_len: data.len() as _, in_len: 0, flags: kind as u16 | (iface as u16) << 12, id: 1, // todo status: 0, }; buf[0..SdpcmHeader::SIZE].copy_from_slice(&sdpcm_header.to_bytes()); buf[SdpcmHeader::SIZE..][..CdcHeader::SIZE].copy_from_slice(&cdc_header.to_bytes()); buf[SdpcmHeader::SIZE + CdcHeader::SIZE..][..data.len()].copy_from_slice(data); info!("txing {:02x}", &buf[..total_len]); let cmd = cmd_word(true, true, FUNC_WLAN, 0, total_len as _); self.cs.set_low(); self.spi_write(&cmd.to_le_bytes()); self.spi_write(&buf[..total_len]); self.cs.set_high(); } fn core_disable(&mut self, core: Core) { let base = core.base_addr(); // Dummy read? let _ = self.bp_read8(base + AI_RESETCTRL_OFFSET); // Check it isn't already reset let r = self.bp_read8(base + AI_RESETCTRL_OFFSET); if r & AI_RESETCTRL_BIT_RESET != 0 { return; } self.bp_write8(base + AI_IOCTRL_OFFSET, 0); let _ = self.bp_read8(base + AI_IOCTRL_OFFSET); block_for(Duration::from_millis(1)); self.bp_write8(base + AI_RESETCTRL_OFFSET, AI_RESETCTRL_BIT_RESET); let _ = self.bp_read8(base + AI_RESETCTRL_OFFSET); } fn core_reset(&mut self, core: Core) { self.core_disable(core); let base = core.base_addr(); self.bp_write8(base + AI_IOCTRL_OFFSET, AI_IOCTRL_BIT_FGC | AI_IOCTRL_BIT_CLOCK_EN); let _ = self.bp_read8(base + AI_IOCTRL_OFFSET); self.bp_write8(base + AI_RESETCTRL_OFFSET, 0); block_for(Duration::from_millis(1)); self.bp_write8(base + AI_IOCTRL_OFFSET, AI_IOCTRL_BIT_CLOCK_EN); let _ = self.bp_read8(base + AI_IOCTRL_OFFSET); block_for(Duration::from_millis(1)); } fn core_is_up(&mut self, core: Core) -> bool { let base = core.base_addr(); let io = self.bp_read8(base + AI_IOCTRL_OFFSET); if io & (AI_IOCTRL_BIT_FGC | AI_IOCTRL_BIT_CLOCK_EN) != AI_IOCTRL_BIT_CLOCK_EN { debug!("core_is_up: returning false due to bad ioctrl {:02x}", io); return false; } let r = self.bp_read8(base + AI_RESETCTRL_OFFSET); if r & (AI_RESETCTRL_BIT_RESET) != 0 { debug!("core_is_up: returning false due to bad resetctrl {:02x}", r); return false; } true } fn bp_read(&mut self, mut addr: u32, mut data: &mut [u8]) { // It seems the HW force-aligns the addr // to 2 if data.len() >= 2 // to 4 if data.len() >= 4 // To simplify, enforce 4-align for now. assert!(addr % 4 == 0); while !data.is_empty() { // Ensure transfer doesn't cross a window boundary. let window_offs = addr & BACKPLANE_ADDRESS_MASK; let window_remaining = BACKPLANE_WINDOW_SIZE - window_offs as usize; let len = data.len().min(BACKPLANE_MAX_TRANSFER_SIZE).min(window_remaining); self.backplane_set_window(addr); let cmd = cmd_word(false, true, FUNC_BACKPLANE, window_offs, len as u32); self.cs.set_low(); self.spi_write(&cmd.to_le_bytes()); // 4-byte response delay. let mut junk = [0; 4]; self.spi_read(&mut junk); // Read data self.spi_read(&mut data[..len]); // pad to 32bit if len % 4 != 0 { self.spi_read(&mut junk[..(4 - len % 4)]); } self.cs.set_high(); // Advance ptr. addr += len as u32; data = &mut data[len..]; } } fn bp_write(&mut self, mut addr: u32, mut data: &[u8]) { // It seems the HW force-aligns the addr // to 2 if data.len() >= 2 // to 4 if data.len() >= 4 // To simplify, enforce 4-align for now. assert!(addr % 4 == 0); while !data.is_empty() { // Ensure transfer doesn't cross a window boundary. let window_offs = addr & BACKPLANE_ADDRESS_MASK; let window_remaining = BACKPLANE_WINDOW_SIZE - window_offs as usize; let len = data.len().min(BACKPLANE_MAX_TRANSFER_SIZE).min(window_remaining); self.backplane_set_window(addr); let cmd = cmd_word(true, true, FUNC_BACKPLANE, window_offs, len as u32); self.cs.set_low(); self.spi_write(&cmd.to_le_bytes()); self.spi_write(&data[..len]); // pad to 32bit if len % 4 != 0 { let zeros = [0; 4]; self.spi_write(&zeros[..(4 - len % 4)]); } self.cs.set_high(); // Advance ptr. addr += len as u32; data = &data[len..]; } } fn bp_read8(&mut self, addr: u32) -> u8 { self.backplane_readn(addr, 1) as u8 } fn bp_write8(&mut self, addr: u32, val: u8) { self.backplane_writen(addr, val as u32, 1) } fn bp_read16(&mut self, addr: u32) -> u16 { self.backplane_readn(addr, 2) as u16 } fn bp_write16(&mut self, addr: u32, val: u16) { self.backplane_writen(addr, val as u32, 2) } fn bp_read32(&mut self, addr: u32) -> u32 { self.backplane_readn(addr, 4) } fn bp_write32(&mut self, addr: u32, val: u32) { self.backplane_writen(addr, val, 4) } fn backplane_readn(&mut self, addr: u32, len: u32) -> u32 { self.backplane_set_window(addr); let mut bus_addr = addr & BACKPLANE_ADDRESS_MASK; if len == 4 { bus_addr |= BACKPLANE_ADDRESS_32BIT_FLAG } self.readn(FUNC_BACKPLANE, bus_addr, len) } fn backplane_writen(&mut self, addr: u32, val: u32, len: u32) { self.backplane_set_window(addr); let mut bus_addr = addr & BACKPLANE_ADDRESS_MASK; if len == 4 { bus_addr |= BACKPLANE_ADDRESS_32BIT_FLAG } self.writen(FUNC_BACKPLANE, bus_addr, val, len) } fn backplane_set_window(&mut self, addr: u32) { let new_window = addr & !BACKPLANE_ADDRESS_MASK; if (new_window >> 24) as u8 != (self.backplane_window >> 24) as u8 { self.write8( FUNC_BACKPLANE, REG_BACKPLANE_BACKPLANE_ADDRESS_HIGH, (new_window >> 24) as u8, ); } if (new_window >> 16) as u8 != (self.backplane_window >> 16) as u8 { self.write8( FUNC_BACKPLANE, REG_BACKPLANE_BACKPLANE_ADDRESS_MID, (new_window >> 16) as u8, ); } if (new_window >> 8) as u8 != (self.backplane_window >> 8) as u8 { self.write8( FUNC_BACKPLANE, REG_BACKPLANE_BACKPLANE_ADDRESS_LOW, (new_window >> 8) as u8, ); } self.backplane_window = new_window; } fn read8(&mut self, func: u32, addr: u32) -> u8 { self.readn(func, addr, 1) as u8 } fn write8(&mut self, func: u32, addr: u32, val: u8) { self.writen(func, addr, val as u32, 1) } fn read16(&mut self, func: u32, addr: u32) -> u16 { self.readn(func, addr, 2) as u16 } fn write16(&mut self, func: u32, addr: u32, val: u16) { self.writen(func, addr, val as u32, 2) } fn read32(&mut self, func: u32, addr: u32) -> u32 { self.readn(func, addr, 4) } fn write32(&mut self, func: u32, addr: u32, val: u32) { self.writen(func, addr, val, 4) } fn readn(&mut self, func: u32, addr: u32, len: u32) -> u32 { let cmd = cmd_word(false, true, func, addr, len); let mut buf = [0; 4]; self.cs.set_low(); self.spi_write(&cmd.to_le_bytes()); if func == FUNC_BACKPLANE { // 4-byte response delay. self.spi_read(&mut buf); } self.spi_read(&mut buf); self.cs.set_high(); u32::from_le_bytes(buf) } fn writen(&mut self, func: u32, addr: u32, val: u32, len: u32) { let cmd = cmd_word(true, true, func, addr, len); self.cs.set_low(); self.spi_write(&cmd.to_le_bytes()); self.spi_write(&val.to_le_bytes()); self.cs.set_high(); } fn read32_swapped(&mut self, addr: u32) -> u32 { let cmd = cmd_word(false, true, FUNC_BUS, addr, 4); let mut buf = [0; 4]; self.cs.set_low(); self.spi_write(&swap16(cmd).to_le_bytes()); self.spi_read(&mut buf); self.cs.set_high(); swap16(u32::from_le_bytes(buf)) } fn write32_swapped(&mut self, addr: u32, val: u32) { let cmd = cmd_word(true, true, FUNC_BUS, addr, 4); self.cs.set_low(); self.spi_write(&swap16(cmd).to_le_bytes()); self.spi_write(&swap16(val).to_le_bytes()); self.cs.set_high(); } fn spi_read(&mut self, words: &mut [u8]) { self.dio.set_as_input(); for word in words { let mut w = 0; for _ in 0..8 { w = w << 1; // rising edge, sample data if self.dio.is_high() { w |= 0x01; } self.clk.set_high(); delay(); // falling edge self.clk.set_low(); delay(); } *word = w } self.clk.set_low(); delay(); } fn spi_write(&mut self, words: &[u8]) { self.dio.set_as_output(); for word in words { let mut word = *word; for _ in 0..8 { // falling edge, setup data self.clk.set_low(); if word & 0x80 == 0 { self.dio.set_low(); } else { self.dio.set_high(); } delay(); // rising edge self.clk.set_high(); delay(); word = word << 1; } } self.clk.set_low(); delay(); self.dio.set_as_input(); } } fn delay() { //cortex_m::asm::delay(5); } macro_rules! nvram { ($($s:literal,)*) => { concat_bytes!($($s, b"\x00",)* b"\x00\x00") }; } static NVRAM: &'static [u8] = &*nvram!( b"NVRAMRev=$Rev$", b"manfid=0x2d0", b"prodid=0x0727", b"vendid=0x14e4", b"devid=0x43e2", b"boardtype=0x0887", b"boardrev=0x1100", b"boardnum=22", b"macaddr=00:A0:50:86:aa:b6", b"sromrev=11", b"boardflags=0x00404001", b"boardflags3=0x04000000", b"xtalfreq=26000", b"nocrc=1", b"ag0=255", b"aa2g=1", b"ccode=ALL", b"pa0itssit=0x20", b"extpagain2g=0", b"pa2ga0=-168,7161,-820", b"AvVmid_c0=0x0,0xc8", b"cckpwroffset0=5", b"maxp2ga0=84", b"txpwrbckof=6", b"cckbw202gpo=0", b"legofdmbw202gpo=0x66111111", b"mcsbw202gpo=0x77711111", b"propbw202gpo=0xdd", b"ofdmdigfilttype=18", b"ofdmdigfilttypebe=18", b"papdmode=1", b"papdvalidtest=1", b"pacalidx2g=45", b"papdepsoffset=-30", b"papdendidx=58", b"ltecxmux=0", b"ltecxpadnum=0x0102", b"ltecxfnsel=0x44", b"ltecxgcigpio=0x01", b"il0macaddr=00:90:4c:c5:12:38", b"wl0id=0x431b", b"deadman_to=0xffffffff", b"muxenab=0x1", b"spurconfig=0x3", b"glitch_based_crsmin=1", b"btc_mode=1", );