use core::future::poll_fn; use core::marker::PhantomData; use core::sync::atomic::{compiler_fence, Ordering}; use core::task::Poll; use embassy_hal_internal::{into_ref, PeripheralRef}; use embassy_sync::waitqueue::AtomicWaker; use crate::gpio::sealed::Pin as GpioPin; use crate::gpio::{self, AnyPin, Pull}; use crate::interrupt::typelevel::Binding; use crate::interrupt::InterruptExt; use crate::peripherals::ADC; use crate::{interrupt, pac, peripherals, Peripheral}; static WAKER: AtomicWaker = AtomicWaker::new(); #[non_exhaustive] pub struct Config {} impl Default for Config { fn default() -> Self { Self {} } } pub struct Pin<'p> { pin: PeripheralRef<'p, AnyPin>, } impl<'p> Pin<'p> { pub fn new(pin: impl Peripheral

+ 'p, pull: Pull) -> Self { into_ref!(pin); pin.pad_ctrl().modify(|w| { // manual says: // // > When using an ADC input shared with a GPIO pin, the pin’s // > digital functions must be disabled by setting IE low and OD // > high in the pin’s pad control register w.set_ie(false); w.set_od(true); w.set_pue(pull == Pull::Up); w.set_pde(pull == Pull::Down); }); Self { pin: pin.map_into() } } fn channel(&self) -> u8 { // this requires adc pins to be sequential and matching the adc channels, // which is the case for rp2040 self.pin._pin() - 26 } } impl<'d> Drop for Pin<'d> { fn drop(&mut self) { self.pin.pad_ctrl().modify(|w| { w.set_ie(true); w.set_od(false); w.set_pue(false); w.set_pde(true); }); } } #[derive(Debug, Eq, PartialEq, Copy, Clone)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum Error { ConversionFailed, } pub trait Mode {} pub struct Async; impl Mode for Async {} pub struct Blocking; impl Mode for Blocking {} pub struct Adc<'d, M: Mode> { phantom: PhantomData<(&'d ADC, M)>, } impl<'d, M: Mode> Drop for Adc<'d, M> { fn drop(&mut self) { let r = Self::regs(); // disable ADC. leaving it enabled comes with a ~150µA static // current draw. the temperature sensor has already been disabled // by the temperature-reading methods, so we don't need to touch that. r.cs().write(|w| w.set_en(false)); } } impl<'d, M: Mode> Adc<'d, M> { #[inline] fn regs() -> pac::adc::Adc { pac::ADC } #[inline] fn reset() -> pac::resets::regs::Peripherals { let mut ret = pac::resets::regs::Peripherals::default(); ret.set_adc(true); ret } fn setup() { let reset = Self::reset(); crate::reset::reset(reset); crate::reset::unreset_wait(reset); let r = Self::regs(); // Enable ADC r.cs().write(|w| w.set_en(true)); // Wait for ADC ready while !r.cs().read().ready() {} } fn sample_blocking(channel: u8) -> Result { let r = Self::regs(); r.cs().modify(|w| { w.set_ainsel(channel); w.set_start_once(true); w.set_err(true); }); while !r.cs().read().ready() {} match r.cs().read().err() { true => Err(Error::ConversionFailed), false => Ok(r.result().read().result().into()), } } pub fn blocking_read(&mut self, pin: &mut Pin) -> Result { Self::sample_blocking(pin.channel()) } pub fn blocking_read_temperature(&mut self) -> Result { let r = Self::regs(); r.cs().modify(|w| w.set_ts_en(true)); while !r.cs().read().ready() {} let result = Self::sample_blocking(4); r.cs().modify(|w| w.set_ts_en(false)); result } } impl<'d> Adc<'d, Async> { pub fn new( _inner: impl Peripheral

+ 'd, _irq: impl Binding, _config: Config, ) -> Self { Self::setup(); // Setup IRQ interrupt::ADC_IRQ_FIFO.unpend(); unsafe { interrupt::ADC_IRQ_FIFO.enable() }; Self { phantom: PhantomData } } async fn wait_for_ready() { let r = Self::regs(); r.inte().write(|w| w.set_fifo(true)); compiler_fence(Ordering::SeqCst); poll_fn(|cx| { WAKER.register(cx.waker()); if r.cs().read().ready() { return Poll::Ready(()); } Poll::Pending }) .await; } async fn sample_async(channel: u8) -> Result { let r = Self::regs(); r.cs().modify(|w| { w.set_ainsel(channel); w.set_start_once(true); w.set_err(true); }); Self::wait_for_ready().await; match r.cs().read().err() { true => Err(Error::ConversionFailed), false => Ok(r.result().read().result().into()), } } pub async fn read(&mut self, pin: &mut Pin<'_>) -> Result { Self::sample_async(pin.channel()).await } pub async fn read_temperature(&mut self) -> Result { let r = Self::regs(); r.cs().modify(|w| w.set_ts_en(true)); if !r.cs().read().ready() { Self::wait_for_ready().await; } let result = Self::sample_async(4).await; r.cs().modify(|w| w.set_ts_en(false)); result } } impl<'d> Adc<'d, Blocking> { pub fn new_blocking(_inner: impl Peripheral

+ 'd, _config: Config) -> Self { Self::setup(); Self { phantom: PhantomData } } } pub struct InterruptHandler { _empty: (), } impl interrupt::typelevel::Handler for InterruptHandler { unsafe fn on_interrupt() { let r = Adc::::regs(); r.inte().write(|w| w.set_fifo(false)); WAKER.wake(); } } mod sealed { pub trait AdcPin: crate::gpio::sealed::Pin { fn channel(&mut self) -> u8; } } pub trait AdcPin: sealed::AdcPin + gpio::Pin {} macro_rules! impl_pin { ($pin:ident, $channel:expr) => { impl sealed::AdcPin for peripherals::$pin { fn channel(&mut self) -> u8 { $channel } } impl AdcPin for peripherals::$pin {} }; } impl_pin!(PIN_26, 0); impl_pin!(PIN_27, 1); impl_pin!(PIN_28, 2); impl_pin!(PIN_29, 3);