#![no_std] #![no_main] #![feature(type_alias_impl_trait)] use core::mem; use core::sync::atomic::{AtomicBool, Ordering}; use defmt::*; use embassy_executor::Spawner; use embassy_futures::join::join; use embassy_futures::select::{select, Either}; use embassy_nrf::gpio::{Input, Pin, Pull}; use embassy_nrf::usb::{Driver, PowerUsb}; use embassy_nrf::{interrupt, pac}; use embassy_sync::signal::Signal; use embassy_usb::control::OutResponse; use embassy_usb::{Builder, Config, DeviceStateHandler}; use embassy_usb_hid::{HidReaderWriter, ReportId, RequestHandler, State}; use usbd_hid::descriptor::{KeyboardReport, SerializedDescriptor}; use {defmt_rtt as _, panic_probe as _}; static SUSPENDED: AtomicBool = AtomicBool::new(false); #[embassy_executor::main] async fn main(_spawner: Spawner) { let p = embassy_nrf::init(Default::default()); let clock: pac::CLOCK = unsafe { mem::transmute(()) }; info!("Enabling ext hfosc..."); clock.tasks_hfclkstart.write(|w| unsafe { w.bits(1) }); while clock.events_hfclkstarted.read().bits() != 1 {} // Create the driver, from the HAL. let irq = interrupt::take!(USBD); let power_irq = interrupt::take!(POWER_CLOCK); let driver = Driver::new(p.USBD, irq, PowerUsb::new(power_irq)); // Create embassy-usb Config let mut config = Config::new(0xc0de, 0xcafe); config.manufacturer = Some("Embassy"); config.product = Some("HID keyboard example"); config.serial_number = Some("12345678"); config.max_power = 100; config.max_packet_size_0 = 64; config.supports_remote_wakeup = true; // Create embassy-usb DeviceBuilder using the driver and config. // It needs some buffers for building the descriptors. let mut device_descriptor = [0; 256]; let mut config_descriptor = [0; 256]; let mut bos_descriptor = [0; 256]; let mut control_buf = [0; 64]; let request_handler = MyRequestHandler {}; let device_state_handler = MyDeviceStateHandler::new(); let mut state = State::new(); let mut builder = Builder::new( driver, config, &mut device_descriptor, &mut config_descriptor, &mut bos_descriptor, &mut control_buf, Some(&device_state_handler), ); // Create classes on the builder. let config = embassy_usb_hid::Config { report_descriptor: KeyboardReport::desc(), request_handler: Some(&request_handler), poll_ms: 60, max_packet_size: 64, }; let hid = HidReaderWriter::<_, 1, 8>::new(&mut builder, &mut state, config); // Build the builder. let mut usb = builder.build(); let remote_wakeup = Signal::new(); // Run the USB device. let usb_fut = async { loop { usb.run_until_suspend().await; match select(usb.wait_resume(), remote_wakeup.wait()).await { Either::First(_) => (), Either::Second(_) => unwrap!(usb.remote_wakeup().await), } } }; let mut button = Input::new(p.P0_11.degrade(), Pull::Up); let (reader, mut writer) = hid.split(); // Do stuff with the class! let in_fut = async { loop { button.wait_for_low().await; info!("PRESSED"); if SUSPENDED.load(Ordering::Acquire) { info!("Triggering remote wakeup"); remote_wakeup.signal(()); } else { let report = KeyboardReport { keycodes: [4, 0, 0, 0, 0, 0], leds: 0, modifier: 0, reserved: 0, }; match writer.write_serialize(&report).await { Ok(()) => {} Err(e) => warn!("Failed to send report: {:?}", e), }; } button.wait_for_high().await; info!("RELEASED"); let report = KeyboardReport { keycodes: [0, 0, 0, 0, 0, 0], leds: 0, modifier: 0, reserved: 0, }; match writer.write_serialize(&report).await { Ok(()) => {} Err(e) => warn!("Failed to send report: {:?}", e), }; } }; let out_fut = async { reader.run(false, &request_handler).await; }; // Run everything concurrently. // If we had made everything `'static` above instead, we could do this using separate tasks instead. join(usb_fut, join(in_fut, out_fut)).await; } struct MyRequestHandler {} impl RequestHandler for MyRequestHandler { fn get_report(&self, id: ReportId, _buf: &mut [u8]) -> Option { info!("Get report for {:?}", id); None } fn set_report(&self, id: ReportId, data: &[u8]) -> OutResponse { info!("Set report for {:?}: {=[u8]}", id, data); OutResponse::Accepted } fn set_idle_ms(&self, id: Option, dur: u32) { info!("Set idle rate for {:?} to {:?}", id, dur); } fn get_idle_ms(&self, id: Option) -> Option { info!("Get idle rate for {:?}", id); None } } struct MyDeviceStateHandler { configured: AtomicBool, } impl MyDeviceStateHandler { fn new() -> Self { MyDeviceStateHandler { configured: AtomicBool::new(false), } } } impl DeviceStateHandler for MyDeviceStateHandler { fn enabled(&self, enabled: bool) { self.configured.store(false, Ordering::Relaxed); SUSPENDED.store(false, Ordering::Release); if enabled { info!("Device enabled"); } else { info!("Device disabled"); } } fn reset(&self) { self.configured.store(false, Ordering::Relaxed); info!("Bus reset, the Vbus current limit is 100mA"); } fn addressed(&self, addr: u8) { self.configured.store(false, Ordering::Relaxed); info!("USB address set to: {}", addr); } fn configured(&self, configured: bool) { self.configured.store(configured, Ordering::Relaxed); if configured { info!("Device configured, it may now draw up to the configured current limit from Vbus.") } else { info!("Device is no longer configured, the Vbus current limit is 100mA."); } } fn suspended(&self, suspended: bool) { if suspended { info!("Device suspended, the Vbus current limit is 500µA (or 2.5mA for high-power devices with remote wakeup enabled)."); SUSPENDED.store(true, Ordering::Release); } else { SUSPENDED.store(false, Ordering::Release); if self.configured.load(Ordering::Relaxed) { info!("Device resumed, it may now draw up to the configured current limit from Vbus"); } else { info!("Device resumed, the Vbus current limit is 100mA"); } } } }