use core::future::Future; use core::task::Poll; use atomic_polyfill::{AtomicU8, Ordering}; use embassy::interrupt::{Interrupt, InterruptExt}; use embassy::util::{AtomicWaker, OnDrop}; use futures::future::poll_fn; use super::{ReadDma, WriteDma}; use crate::interrupt; use crate::pac; use crate::pac::bdma::vals; const CH_COUNT: usize = pac::peripheral_count!(DMA) * 8; const CH_STATUS_NONE: u8 = 0; const CH_STATUS_COMPLETED: u8 = 1; const CH_STATUS_ERROR: u8 = 2; struct State { ch_wakers: [AtomicWaker; CH_COUNT], ch_status: [AtomicU8; CH_COUNT], } impl State { const fn new() -> Self { const AW: AtomicWaker = AtomicWaker::new(); const AU: AtomicU8 = AtomicU8::new(CH_STATUS_NONE); Self { ch_wakers: [AW; CH_COUNT], ch_status: [AU; CH_COUNT], } } } static STATE: State = State::new(); #[allow(unused)] pub(crate) async unsafe fn transfer_p2m(ch: &mut impl Channel, src: *const u8, dst: &mut [u8]) { // ndtr is max 16 bits. assert!(dst.len() <= 0xFFFF); let regs: pac::bdma::Ch = ch.regs(); let state_number = ch.state_num(); // Reset status // Generate a DMB here to flush the store buffer (M7) before enabling the DMA STATE.ch_status[state_number].store(CH_STATUS_NONE, Ordering::Release); let on_drop = OnDrop::new(|| unsafe { regs.cr().modify(|w| { w.set_tcie(false); w.set_teie(false); w.set_en(false); }); while regs.cr().read().en() {} }); regs.par().write_value(src as u32); regs.mar().write_value(dst.as_mut_ptr() as u32); regs.ndtr().write(|w| w.set_ndt(dst.len() as u16)); regs.cr().write(|w| { w.set_psize(vals::Size::BITS8); w.set_msize(vals::Size::BITS8); w.set_minc(vals::Inc::ENABLED); w.set_teie(true); w.set_tcie(true); w.set_en(true); }); let res = poll_fn(|cx| { STATE.ch_wakers[state_number].register(cx.waker()); match STATE.ch_status[state_number].load(Ordering::Acquire) { CH_STATUS_NONE => Poll::Pending, x => Poll::Ready(x), } }) .await; on_drop.defuse(); // TODO handle error assert!(res == CH_STATUS_COMPLETED); } #[allow(unused)] pub(crate) async unsafe fn transfer_m2p(ch: &mut impl Channel, src: &[u8], dst: *mut u8) { // ndtr is max 16 bits. assert!(src.len() <= 0xFFFF); let regs: pac::bdma::Ch = ch.regs(); let state_number = ch.state_num(); // Reset status // Generate a DMB here to flush the store buffer (M7) before enabling the DMA STATE.ch_status[state_number].store(CH_STATUS_NONE, Ordering::Release); let on_drop = OnDrop::new(|| unsafe { regs.cr().modify(|w| { w.set_tcie(false); w.set_teie(false); w.set_en(false); }); while regs.cr().read().en() {} }); regs.par().write_value(dst as u32); regs.mar().write_value(src.as_ptr() as u32); regs.ndtr().write(|w| w.set_ndt(src.len() as u16)); regs.cr().write(|w| { w.set_psize(vals::Size::BITS8); w.set_msize(vals::Size::BITS8); w.set_minc(vals::Inc::ENABLED); w.set_dir(vals::Dir::FROMMEMORY); w.set_teie(true); w.set_tcie(true); w.set_en(true); }); let res = poll_fn(|cx| { STATE.ch_wakers[state_number].register(cx.waker()); match STATE.ch_status[state_number].load(Ordering::Acquire) { CH_STATUS_NONE => Poll::Pending, x => Poll::Ready(x), } }) .await; on_drop.defuse(); // TODO handle error assert!(res == CH_STATUS_COMPLETED); } unsafe fn on_irq() { pac::peripherals! { (bdma, $dma:ident) => { let isr = pac::$dma.isr().read(); pac::$dma.ifcr().write_value(isr); let dman = ::num() as usize; for chn in 0..7 { let n = dman * 8 + chn; if isr.teif(chn) { STATE.ch_status[n].store(CH_STATUS_ERROR, Ordering::Relaxed); STATE.ch_wakers[n].wake(); } else if isr.tcif(chn) { STATE.ch_status[n].store(CH_STATUS_COMPLETED, Ordering::Relaxed); STATE.ch_wakers[n].wake(); } } }; } } /// safety: must be called only once pub(crate) unsafe fn init() { pac::interrupts! { (DMA, $irq:ident) => { crate::interrupt::$irq::steal().enable(); }; } } pub(crate) mod sealed { use super::*; pub trait Dma { fn num() -> u8; } pub trait Channel { fn dma_regs() -> &'static pac::bdma::Dma; fn state_num(&self) -> usize; fn ch_num(&self) -> u8; fn regs(&self) -> pac::bdma::Ch { Self::dma_regs().ch(self.ch_num() as usize) } } } pub trait Dma: sealed::Dma + Sized {} pub trait Channel: sealed::Channel + Sized {} macro_rules! impl_dma { ($peri:ident, $num:expr) => { impl Dma for crate::peripherals::$peri {} impl sealed::Dma for crate::peripherals::$peri { fn num() -> u8 { $num } } }; } macro_rules! impl_dma_channel { ($channel_peri:ident, $dma_peri:ident, $dma_num:expr, $ch_num:expr) => { impl Channel for crate::peripherals::$channel_peri {} impl sealed::Channel for crate::peripherals::$channel_peri { #[inline] fn dma_regs() -> &'static pac::bdma::Dma { &crate::pac::$dma_peri } fn state_num(&self) -> usize { ($dma_num * 8) + $ch_num } fn ch_num(&self) -> u8 { $ch_num } } impl WriteDma for crate::peripherals::$channel_peri where T: 'static, { type WriteDmaFuture<'a> = impl Future; fn transfer<'a>(&'a mut self, buf: &'a [u8], dst: *mut u8) -> Self::WriteDmaFuture<'a> where T: 'a, { unsafe { transfer_m2p(self, buf, dst) } } } impl ReadDma for crate::peripherals::$channel_peri where T: 'static, { type ReadDmaFuture<'a> = impl Future; fn transfer<'a>( &'a mut self, src: *const u8, buf: &'a mut [u8], ) -> Self::ReadDmaFuture<'a> where T: 'a, { unsafe { transfer_p2m(self, src, buf) } } } }; } pac::peripherals! { (bdma, DMA1) => { impl_dma!(DMA1, 0); pac::dma_channels! { ($channel_peri:ident, DMA1, $channel_num:expr) => { impl_dma_channel!($channel_peri, DMA1, 0, $channel_num); }; } }; (bdma, DMA2) => { impl_dma!(DMA2, 1); pac::dma_channels! { ($channel_peri:ident, DMA2, $channel_num:expr) => { impl_dma_channel!($channel_peri, DMA2, 1, $channel_num); }; } }; } pac::interrupts! { (DMA, $irq:ident) => { #[crate::interrupt] unsafe fn $irq () { on_irq() } }; }