use core::marker::PhantomData; use embassy_hal_common::into_ref; use embedded_hal_02::blocking::delay::DelayUs; use crate::adc::{AdcPin, Instance, Resolution, SampleTime}; use crate::Peripheral; /// Default VREF voltage used for sample conversion to millivolts. pub const VREF_DEFAULT_MV: u32 = 3300; /// VREF voltage used for factory calibration of VREFINTCAL register. pub const VREF_CALIB_MV: u32 = 3000; /// Sadly we cannot use `RccPeripheral::enable` since devices are quite inconsistent ADC clock /// configuration. fn enable() { critical_section::with(|_| unsafe { #[cfg(stm32h7)] crate::pac::RCC.apb2enr().modify(|w| w.set_adcen(true)); #[cfg(stm32g0)] crate::pac::RCC.apbenr2().modify(|w| w.set_adcen(true)); #[cfg(any(stm32l4, stm32l5, stm32wb))] crate::pac::RCC.ahb2enr().modify(|w| w.set_adcen(true)); }); } pub struct VrefInt; impl AdcPin for VrefInt {} impl super::sealed::AdcPin for VrefInt { fn channel(&self) -> u8 { #[cfg(not(stm32g0))] let val = 0; #[cfg(stm32g0)] let val = 13; val } } pub struct Temperature; impl AdcPin for Temperature {} impl super::sealed::AdcPin for Temperature { fn channel(&self) -> u8 { #[cfg(not(stm32g0))] let val = 17; #[cfg(stm32g0)] let val = 12; val } } pub struct Vbat; impl AdcPin for Vbat {} impl super::sealed::AdcPin for Vbat { fn channel(&self) -> u8 { #[cfg(not(stm32g0))] let val = 18; #[cfg(stm32g0)] let val = 14; val } } pub struct Adc<'d, T: Instance> { sample_time: SampleTime, phantom: PhantomData<&'d mut T>, } impl<'d, T: Instance> Adc<'d, T> { pub fn new(_peri: impl Peripheral

+ 'd, delay: &mut impl DelayUs) -> Self { into_ref!(_peri); enable(); unsafe { T::regs().cr().modify(|reg| { #[cfg(not(adc_g0))] reg.set_deeppwd(false); reg.set_advregen(true); }); #[cfg(adc_g0)] T::regs().cfgr1().modify(|reg| { reg.set_chselrmod(true); }); } delay.delay_us(20); unsafe { T::regs().cr().modify(|reg| { reg.set_adcal(true); }); while T::regs().cr().read().adcal() { // spin } } delay.delay_us(1); Self { sample_time: Default::default(), phantom: PhantomData, } } pub fn enable_vrefint(&self, delay: &mut impl DelayUs) -> VrefInt { unsafe { T::common_regs().ccr().modify(|reg| { reg.set_vrefen(true); }); } // "Table 24. Embedded internal voltage reference" states that it takes a maximum of 12 us // to stabilize the internal voltage reference, we wait a little more. // TODO: delay 15us //cortex_m::asm::delay(20_000_000); delay.delay_us(15); VrefInt {} } pub fn enable_temperature(&self) -> Temperature { unsafe { T::common_regs().ccr().modify(|reg| { reg.set_ch17sel(true); }); } Temperature {} } pub fn enable_vbat(&self) -> Vbat { unsafe { T::common_regs().ccr().modify(|reg| { reg.set_ch18sel(true); }); } Vbat {} } pub fn set_sample_time(&mut self, sample_time: SampleTime) { self.sample_time = sample_time; } pub fn set_resolution(&mut self, resolution: Resolution) { unsafe { #[cfg(not(stm32g0))] T::regs().cfgr().modify(|reg| reg.set_res(resolution.into())); #[cfg(stm32g0)] T::regs().cfgr1().modify(|reg| reg.set_res(resolution.into())); } } /* /// Convert a raw sample from the `Temperature` to deg C pub fn to_degrees_centigrade(sample: u16) -> f32 { (130.0 - 30.0) / (VtempCal130::get().read() as f32 - VtempCal30::get().read() as f32) * (sample as f32 - VtempCal30::get().read() as f32) + 30.0 } */ /// Perform a single conversion. fn convert(&mut self) -> u16 { unsafe { T::regs().isr().modify(|reg| { reg.set_eos(true); reg.set_eoc(true); }); // Start conversion T::regs().cr().modify(|reg| { reg.set_adstart(true); }); while !T::regs().isr().read().eos() { // spin } T::regs().dr().read().0 as u16 } } pub fn read(&mut self, pin: &mut impl AdcPin) -> u16 { unsafe { // Make sure bits are off while T::regs().cr().read().addis() { // spin } // Enable ADC T::regs().isr().modify(|reg| { reg.set_adrdy(true); }); T::regs().cr().modify(|reg| { reg.set_aden(true); }); while !T::regs().isr().read().adrdy() { // spin } // Configure channel Self::set_channel_sample_time(pin.channel(), self.sample_time); // Select channel #[cfg(not(stm32g0))] T::regs().sqr1().write(|reg| reg.set_sq(0, pin.channel())); #[cfg(stm32g0)] T::regs().chselr().write(|reg| reg.set_chsel(pin.channel() as u32)); // Some models are affected by an erratum: // If we perform conversions slower than 1 kHz, the first read ADC value can be // corrupted, so we discard it and measure again. // // STM32L471xx: Section 2.7.3 // STM32G4: Section 2.7.3 #[cfg(any(rcc_l4, rcc_g4))] let _ = self.convert(); let val = self.convert(); T::regs().cr().modify(|reg| reg.set_addis(true)); val } } #[cfg(stm32g0)] unsafe fn set_channel_sample_time(_ch: u8, sample_time: SampleTime) { T::regs().smpr().modify(|reg| reg.set_smp1(sample_time.into())); } #[cfg(not(stm32g0))] unsafe fn set_channel_sample_time(ch: u8, sample_time: SampleTime) { let sample_time = sample_time.into(); if ch <= 9 { T::regs().smpr1().modify(|reg| reg.set_smp(ch as _, sample_time)); } else { T::regs().smpr2().modify(|reg| reg.set_smp((ch - 10) as _, sample_time)); } } }