use core::marker::PhantomData; use embedded_hal_async::spi::SpiDevice; use crate::chip::Chip; #[repr(u8)] enum Command { Open = 0x01, Send = 0x20, Receive = 0x40, } #[repr(u8)] enum Interrupt { Receive = 0b00100_u8, } /// Wiznet chip in MACRAW mode #[derive(Debug)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub(crate) struct WiznetDevice { spi: SPI, _phantom: PhantomData, } impl WiznetDevice { /// Create and initialize the driver pub async fn new(spi: SPI, mac_addr: [u8; 6]) -> Result { let mut this = Self { spi, _phantom: PhantomData, }; // Reset device this.bus_write(C::COMMON_MODE, &[0x80]).await?; // Enable interrupt pin this.bus_write(C::COMMON_SOCKET_INTR, &[0x01]).await?; // Enable receive interrupt this.bus_write(C::SOCKET_INTR_MASK, &[Interrupt::Receive as u8]).await?; // Set MAC address this.bus_write(C::COMMON_MAC, &mac_addr).await?; // Set the raw socket RX/TX buffer sizes. let buf_kbs = (C::BUF_SIZE / 1024) as u8; this.bus_write(C::SOCKET_TXBUF_SIZE, &[buf_kbs]).await?; this.bus_write(C::SOCKET_RXBUF_SIZE, &[buf_kbs]).await?; // MACRAW mode with MAC filtering. this.bus_write(C::SOCKET_MODE, &[C::SOCKET_MODE_VALUE]).await?; this.command(Command::Open).await?; Ok(this) } async fn bus_read(&mut self, address: C::Address, data: &mut [u8]) -> Result<(), SPI::Error> { C::bus_read(&mut self.spi, address, data).await } async fn bus_write(&mut self, address: C::Address, data: &[u8]) -> Result<(), SPI::Error> { C::bus_write(&mut self.spi, address, data).await } async fn reset_interrupt(&mut self, code: Interrupt) -> Result<(), SPI::Error> { let data = [code as u8]; self.bus_write(C::SOCKET_INTR, &data).await } async fn get_tx_write_ptr(&mut self) -> Result { let mut data = [0u8; 2]; self.bus_read(C::SOCKET_TX_DATA_WRITE_PTR, &mut data).await?; Ok(u16::from_be_bytes(data)) } async fn set_tx_write_ptr(&mut self, ptr: u16) -> Result<(), SPI::Error> { let data = ptr.to_be_bytes(); self.bus_write(C::SOCKET_TX_DATA_WRITE_PTR, &data).await } async fn get_rx_read_ptr(&mut self) -> Result { let mut data = [0u8; 2]; self.bus_read(C::SOCKET_RX_DATA_READ_PTR, &mut data).await?; Ok(u16::from_be_bytes(data)) } async fn set_rx_read_ptr(&mut self, ptr: u16) -> Result<(), SPI::Error> { let data = ptr.to_be_bytes(); self.bus_write(C::SOCKET_RX_DATA_READ_PTR, &data).await } async fn command(&mut self, command: Command) -> Result<(), SPI::Error> { let data = [command as u8]; self.bus_write(C::SOCKET_COMMAND, &data).await } async fn get_rx_size(&mut self) -> Result { loop { // Wait until two sequential reads are equal let mut res0 = [0u8; 2]; self.bus_read(C::SOCKET_RECVD_SIZE, &mut res0).await?; let mut res1 = [0u8; 2]; self.bus_read(C::SOCKET_RECVD_SIZE, &mut res1).await?; if res0 == res1 { break Ok(u16::from_be_bytes(res0)); } } } async fn get_tx_free_size(&mut self) -> Result { let mut data = [0; 2]; self.bus_read(C::SOCKET_TX_FREE_SIZE, &mut data).await?; Ok(u16::from_be_bytes(data)) } /// Read bytes from the RX buffer. async fn read_bytes(&mut self, read_ptr: &mut u16, buffer: &mut [u8]) -> Result<(), SPI::Error> { if C::AUTO_WRAP { self.bus_read(C::rx_addr(*read_ptr), buffer).await?; } else { let addr = *read_ptr % C::BUF_SIZE; if addr as usize + buffer.len() <= C::BUF_SIZE as usize { self.bus_read(C::rx_addr(addr), buffer).await?; } else { let n = C::BUF_SIZE - addr; self.bus_read(C::rx_addr(addr), &mut buffer[..n as usize]).await?; self.bus_read(C::rx_addr(0), &mut buffer[n as usize..]).await?; } } *read_ptr = (*read_ptr).wrapping_add(buffer.len() as u16); Ok(()) } /// Read an ethernet frame from the device. Returns the number of bytes read. pub async fn read_frame(&mut self, frame: &mut [u8]) -> Result { let rx_size = self.get_rx_size().await? as usize; if rx_size == 0 { return Ok(0); } self.reset_interrupt(Interrupt::Receive).await?; let mut read_ptr = self.get_rx_read_ptr().await?; // First two bytes gives the size of the received ethernet frame let expected_frame_size: usize = { let mut frame_bytes = [0u8; 2]; self.read_bytes(&mut read_ptr, &mut frame_bytes).await?; u16::from_be_bytes(frame_bytes) as usize - 2 }; // Read the ethernet frame self.read_bytes(&mut read_ptr, &mut frame[..expected_frame_size]) .await?; // Register RX as completed self.set_rx_read_ptr(read_ptr).await?; self.command(Command::Receive).await?; Ok(expected_frame_size) } /// Write an ethernet frame to the device. Returns number of bytes written pub async fn write_frame(&mut self, frame: &[u8]) -> Result { while self.get_tx_free_size().await? < frame.len() as u16 {} let write_ptr = self.get_tx_write_ptr().await?; if C::AUTO_WRAP { self.bus_write(C::tx_addr(write_ptr), frame).await?; } else { let addr = write_ptr % C::BUF_SIZE; if addr as usize + frame.len() <= C::BUF_SIZE as usize { self.bus_write(C::tx_addr(addr), frame).await?; } else { let n = C::BUF_SIZE - addr; self.bus_write(C::tx_addr(addr), &frame[..n as usize]).await?; self.bus_write(C::tx_addr(0), &frame[n as usize..]).await?; } } self.set_tx_write_ptr(write_ptr.wrapping_add(frame.len() as u16)) .await?; self.command(Command::Send).await?; Ok(frame.len()) } pub async fn is_link_up(&mut self) -> bool { let mut link = [0]; self.bus_read(C::COMMON_PHY_CFG, &mut link).await.ok(); link[0] & 1 == 1 } }