295 lines
9.5 KiB
Rust
295 lines
9.5 KiB
Rust
use core::cell::Cell;
|
|
use core::sync::atomic::{compiler_fence, AtomicU32, Ordering};
|
|
use critical_section::CriticalSection;
|
|
use embassy::interrupt::InterruptExt;
|
|
use embassy::time::Clock;
|
|
use embassy::util::{CriticalSectionMutex as Mutex, Unborrow};
|
|
|
|
use crate::interrupt::Interrupt;
|
|
use crate::pac;
|
|
use crate::{interrupt, peripherals};
|
|
|
|
// RTC timekeeping works with something we call "periods", which are time intervals
|
|
// of 2^23 ticks. The RTC counter value is 24 bits, so one "overflow cycle" is 2 periods.
|
|
//
|
|
// A `period` count is maintained in parallel to the RTC hardware `counter`, like this:
|
|
// - `period` and `counter` start at 0
|
|
// - `period` is incremented on overflow (at counter value 0)
|
|
// - `period` is incremented "midway" between overflows (at counter value 0x800000)
|
|
//
|
|
// Therefore, when `period` is even, counter is in 0..0x7fffff. When odd, counter is in 0x800000..0xFFFFFF
|
|
// This allows for now() to return the correct value even if it races an overflow.
|
|
//
|
|
// To get `now()`, `period` is read first, then `counter` is read. If the counter value matches
|
|
// the expected range for the `period` parity, we're done. If it doesn't, this means that
|
|
// a new period start has raced us between reading `period` and `counter`, so we assume the `counter` value
|
|
// corresponds to the next period.
|
|
//
|
|
// `period` is a 32bit integer, so It overflows on 2^32 * 2^23 / 32768 seconds of uptime, which is 34865 years.
|
|
|
|
fn calc_now(period: u32, counter: u32) -> u64 {
|
|
((period as u64) << 23) + ((counter ^ ((period & 1) << 23)) as u64)
|
|
}
|
|
|
|
fn compare_n(n: usize) -> u32 {
|
|
1 << (n + 16)
|
|
}
|
|
|
|
#[cfg(tests)]
|
|
mod test {
|
|
use super::*;
|
|
|
|
#[test]
|
|
fn test_calc_now() {
|
|
assert_eq!(calc_now(0, 0x000000), 0x0_000000);
|
|
assert_eq!(calc_now(0, 0x000001), 0x0_000001);
|
|
assert_eq!(calc_now(0, 0x7FFFFF), 0x0_7FFFFF);
|
|
assert_eq!(calc_now(1, 0x7FFFFF), 0x1_7FFFFF);
|
|
assert_eq!(calc_now(0, 0x800000), 0x0_800000);
|
|
assert_eq!(calc_now(1, 0x800000), 0x0_800000);
|
|
assert_eq!(calc_now(1, 0x800001), 0x0_800001);
|
|
assert_eq!(calc_now(1, 0xFFFFFF), 0x0_FFFFFF);
|
|
assert_eq!(calc_now(2, 0xFFFFFF), 0x1_FFFFFF);
|
|
assert_eq!(calc_now(1, 0x000000), 0x1_000000);
|
|
assert_eq!(calc_now(2, 0x000000), 0x1_000000);
|
|
}
|
|
}
|
|
|
|
struct AlarmState {
|
|
timestamp: Cell<u64>,
|
|
callback: Cell<Option<(fn(*mut ()), *mut ())>>,
|
|
}
|
|
|
|
impl AlarmState {
|
|
fn new() -> Self {
|
|
Self {
|
|
timestamp: Cell::new(u64::MAX),
|
|
callback: Cell::new(None),
|
|
}
|
|
}
|
|
}
|
|
|
|
const ALARM_COUNT: usize = 3;
|
|
|
|
pub struct RTC<T: Instance> {
|
|
rtc: T,
|
|
irq: T::Interrupt,
|
|
|
|
/// Number of 2^23 periods elapsed since boot.
|
|
period: AtomicU32,
|
|
|
|
/// Timestamp at which to fire alarm. u64::MAX if no alarm is scheduled.
|
|
alarms: Mutex<[AlarmState; ALARM_COUNT]>,
|
|
}
|
|
|
|
unsafe impl<T: Instance> Send for RTC<T> {}
|
|
unsafe impl<T: Instance> Sync for RTC<T> {}
|
|
|
|
impl<T: Instance> RTC<T> {
|
|
pub fn new(rtc: T, irq: T::Interrupt) -> Self {
|
|
Self {
|
|
rtc,
|
|
irq,
|
|
period: AtomicU32::new(0),
|
|
alarms: Mutex::new([AlarmState::new(), AlarmState::new(), AlarmState::new()]),
|
|
}
|
|
}
|
|
|
|
pub fn start(&'static self) {
|
|
let r = self.rtc.regs();
|
|
r.cc[3].write(|w| unsafe { w.bits(0x800000) });
|
|
|
|
r.intenset.write(|w| {
|
|
let w = w.ovrflw().set();
|
|
let w = w.compare3().set();
|
|
w
|
|
});
|
|
|
|
r.tasks_clear.write(|w| unsafe { w.bits(1) });
|
|
r.tasks_start.write(|w| unsafe { w.bits(1) });
|
|
|
|
// Wait for clear
|
|
while r.counter.read().bits() != 0 {}
|
|
|
|
self.irq.set_handler(|ptr| unsafe {
|
|
let this = &*(ptr as *const () as *const Self);
|
|
this.on_interrupt();
|
|
});
|
|
self.irq.set_handler_context(self as *const _ as *mut _);
|
|
self.irq.unpend();
|
|
self.irq.enable();
|
|
}
|
|
|
|
fn on_interrupt(&self) {
|
|
let r = self.rtc.regs();
|
|
if r.events_ovrflw.read().bits() == 1 {
|
|
r.events_ovrflw.write(|w| w);
|
|
self.next_period();
|
|
}
|
|
|
|
if r.events_compare[3].read().bits() == 1 {
|
|
r.events_compare[3].write(|w| w);
|
|
self.next_period();
|
|
}
|
|
|
|
for n in 0..ALARM_COUNT {
|
|
if r.events_compare[n].read().bits() == 1 {
|
|
r.events_compare[n].write(|w| w);
|
|
critical_section::with(|cs| {
|
|
self.trigger_alarm(n, cs);
|
|
})
|
|
}
|
|
}
|
|
}
|
|
|
|
fn next_period(&self) {
|
|
critical_section::with(|cs| {
|
|
let r = self.rtc.regs();
|
|
let period = self.period.fetch_add(1, Ordering::Relaxed) + 1;
|
|
let t = (period as u64) << 23;
|
|
|
|
for n in 0..ALARM_COUNT {
|
|
let alarm = &self.alarms.borrow(cs)[n];
|
|
let at = alarm.timestamp.get();
|
|
|
|
let diff = at - t;
|
|
if diff < 0xc00000 {
|
|
r.cc[n].write(|w| unsafe { w.bits(at as u32 & 0xFFFFFF) });
|
|
r.intenset.write(|w| unsafe { w.bits(compare_n(n)) });
|
|
}
|
|
}
|
|
})
|
|
}
|
|
|
|
fn trigger_alarm(&self, n: usize, cs: CriticalSection) {
|
|
let r = self.rtc.regs();
|
|
r.intenclr.write(|w| unsafe { w.bits(compare_n(n)) });
|
|
|
|
let alarm = &self.alarms.borrow(cs)[n];
|
|
alarm.timestamp.set(u64::MAX);
|
|
|
|
// Call after clearing alarm, so the callback can set another alarm.
|
|
if let Some((f, ctx)) = alarm.callback.get() {
|
|
f(ctx);
|
|
}
|
|
}
|
|
|
|
fn set_alarm_callback(&self, n: usize, callback: fn(*mut ()), ctx: *mut ()) {
|
|
critical_section::with(|cs| {
|
|
let alarm = &self.alarms.borrow(cs)[n];
|
|
alarm.callback.set(Some((callback, ctx)));
|
|
})
|
|
}
|
|
|
|
fn set_alarm(&self, n: usize, timestamp: u64) {
|
|
critical_section::with(|cs| {
|
|
let alarm = &self.alarms.borrow(cs)[n];
|
|
alarm.timestamp.set(timestamp);
|
|
|
|
let t = self.now();
|
|
|
|
// If alarm timestamp has passed, trigger it instantly.
|
|
if timestamp <= t {
|
|
self.trigger_alarm(n, cs);
|
|
return;
|
|
}
|
|
|
|
let r = self.rtc.regs();
|
|
|
|
// If it hasn't triggered yet, setup it in the compare channel.
|
|
let diff = timestamp - t;
|
|
if diff < 0xc00000 {
|
|
// nrf52 docs say:
|
|
// If the COUNTER is N, writing N or N+1 to a CC register may not trigger a COMPARE event.
|
|
// To workaround this, we never write a timestamp smaller than N+3.
|
|
// N+2 is not safe because rtc can tick from N to N+1 between calling now() and writing cc.
|
|
//
|
|
// It is impossible for rtc to tick more than once because
|
|
// - this code takes less time than 1 tick
|
|
// - it runs with interrupts disabled so nothing else can preempt it.
|
|
//
|
|
// This means that an alarm can be delayed for up to 2 ticks (from t+1 to t+3), but this is allowed
|
|
// by the Alarm trait contract. What's not allowed is triggering alarms *before* their scheduled time,
|
|
// and we don't do that here.
|
|
let safe_timestamp = timestamp.max(t + 3);
|
|
r.cc[n].write(|w| unsafe { w.bits(safe_timestamp as u32 & 0xFFFFFF) });
|
|
r.intenset.write(|w| unsafe { w.bits(compare_n(n)) });
|
|
} else {
|
|
// If it's too far in the future, don't setup the compare channel yet.
|
|
// It will be setup later by `next_period`.
|
|
r.intenclr.write(|w| unsafe { w.bits(compare_n(n)) });
|
|
}
|
|
})
|
|
}
|
|
|
|
pub fn alarm0(&'static self) -> Alarm<T> {
|
|
Alarm { n: 0, rtc: self }
|
|
}
|
|
pub fn alarm1(&'static self) -> Alarm<T> {
|
|
Alarm { n: 1, rtc: self }
|
|
}
|
|
pub fn alarm2(&'static self) -> Alarm<T> {
|
|
Alarm { n: 2, rtc: self }
|
|
}
|
|
}
|
|
|
|
impl<T: Instance> embassy::time::Clock for RTC<T> {
|
|
fn now(&self) -> u64 {
|
|
// `period` MUST be read before `counter`, see comment at the top for details.
|
|
let period = self.period.load(Ordering::Relaxed);
|
|
compiler_fence(Ordering::Acquire);
|
|
let counter = self.rtc.regs().counter.read().bits();
|
|
calc_now(period, counter)
|
|
}
|
|
}
|
|
|
|
pub struct Alarm<T: Instance> {
|
|
n: usize,
|
|
rtc: &'static RTC<T>,
|
|
}
|
|
|
|
impl<T: Instance> embassy::time::Alarm for Alarm<T> {
|
|
fn set_callback(&self, callback: fn(*mut ()), ctx: *mut ()) {
|
|
self.rtc.set_alarm_callback(self.n, callback, ctx);
|
|
}
|
|
|
|
fn set(&self, timestamp: u64) {
|
|
self.rtc.set_alarm(self.n, timestamp);
|
|
}
|
|
|
|
fn clear(&self) {
|
|
self.rtc.set_alarm(self.n, u64::MAX);
|
|
}
|
|
}
|
|
|
|
mod sealed {
|
|
use super::*;
|
|
pub trait Instance {
|
|
fn regs(&self) -> &pac::rtc0::RegisterBlock;
|
|
}
|
|
}
|
|
|
|
macro_rules! impl_instance {
|
|
($type:ident, $irq:ident) => {
|
|
impl sealed::Instance for peripherals::$type {
|
|
fn regs(&self) -> &pac::rtc0::RegisterBlock {
|
|
unsafe { &*pac::$type::ptr() }
|
|
}
|
|
}
|
|
impl Instance for peripherals::$type {
|
|
type Interrupt = interrupt::$irq;
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Implemented by all RTC instances.
|
|
pub trait Instance: Unborrow<Target = Self> + sealed::Instance + 'static {
|
|
/// The interrupt associated with this RTC instance.
|
|
type Interrupt: Interrupt;
|
|
}
|
|
|
|
impl_instance!(RTC0, RTC0);
|
|
impl_instance!(RTC1, RTC1);
|
|
#[cfg(any(feature = "nrf52832", feature = "nrf52833", feature = "nrf52840"))]
|
|
impl_instance!(RTC2, RTC2);
|