442 lines
14 KiB
Rust
442 lines
14 KiB
Rust
mod traits;
|
|
|
|
use core::marker::PhantomData;
|
|
|
|
use embassy_hal_internal::{into_ref, PeripheralRef};
|
|
pub use traits::Instance;
|
|
|
|
#[allow(unused_imports)]
|
|
use crate::gpio::sealed::{AFType, Pin};
|
|
use crate::gpio::AnyPin;
|
|
#[cfg(stm32f334)]
|
|
use crate::rcc::get_freqs;
|
|
use crate::time::Hertz;
|
|
use crate::Peripheral;
|
|
|
|
pub enum Source {
|
|
Master,
|
|
ChA,
|
|
ChB,
|
|
ChC,
|
|
ChD,
|
|
ChE,
|
|
#[cfg(hrtim_v2)]
|
|
ChF,
|
|
}
|
|
|
|
pub struct BurstController<T: Instance> {
|
|
phantom: PhantomData<T>,
|
|
}
|
|
pub struct Master<T: Instance> {
|
|
phantom: PhantomData<T>,
|
|
}
|
|
pub struct ChA<T: Instance> {
|
|
phantom: PhantomData<T>,
|
|
}
|
|
pub struct ChB<T: Instance> {
|
|
phantom: PhantomData<T>,
|
|
}
|
|
pub struct ChC<T: Instance> {
|
|
phantom: PhantomData<T>,
|
|
}
|
|
pub struct ChD<T: Instance> {
|
|
phantom: PhantomData<T>,
|
|
}
|
|
pub struct ChE<T: Instance> {
|
|
phantom: PhantomData<T>,
|
|
}
|
|
#[cfg(hrtim_v2)]
|
|
pub struct ChF<T: Instance> {
|
|
phantom: PhantomData<T>,
|
|
}
|
|
|
|
mod sealed {
|
|
use super::Instance;
|
|
|
|
pub trait AdvancedChannel<T: Instance> {
|
|
fn raw() -> usize;
|
|
}
|
|
}
|
|
|
|
pub trait AdvancedChannel<T: Instance>: sealed::AdvancedChannel<T> {}
|
|
|
|
pub struct PwmPin<'d, Perip, Channel> {
|
|
_pin: PeripheralRef<'d, AnyPin>,
|
|
phantom: PhantomData<(Perip, Channel)>,
|
|
}
|
|
|
|
pub struct ComplementaryPwmPin<'d, Perip, Channel> {
|
|
_pin: PeripheralRef<'d, AnyPin>,
|
|
phantom: PhantomData<(Perip, Channel)>,
|
|
}
|
|
|
|
macro_rules! advanced_channel_impl {
|
|
($new_chx:ident, $channel:tt, $ch_num:expr, $pin_trait:ident, $complementary_pin_trait:ident) => {
|
|
impl<'d, Perip: Instance> PwmPin<'d, Perip, $channel<Perip>> {
|
|
pub fn $new_chx(pin: impl Peripheral<P = impl $pin_trait<Perip>> + 'd) -> Self {
|
|
into_ref!(pin);
|
|
critical_section::with(|_| {
|
|
pin.set_low();
|
|
pin.set_as_af(pin.af_num(), AFType::OutputPushPull);
|
|
#[cfg(gpio_v2)]
|
|
pin.set_speed(crate::gpio::Speed::VeryHigh);
|
|
});
|
|
PwmPin {
|
|
_pin: pin.map_into(),
|
|
phantom: PhantomData,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'d, Perip: Instance> ComplementaryPwmPin<'d, Perip, $channel<Perip>> {
|
|
pub fn $new_chx(pin: impl Peripheral<P = impl $complementary_pin_trait<Perip>> + 'd) -> Self {
|
|
into_ref!(pin);
|
|
critical_section::with(|_| {
|
|
pin.set_low();
|
|
pin.set_as_af(pin.af_num(), AFType::OutputPushPull);
|
|
#[cfg(gpio_v2)]
|
|
pin.set_speed(crate::gpio::Speed::VeryHigh);
|
|
});
|
|
ComplementaryPwmPin {
|
|
_pin: pin.map_into(),
|
|
phantom: PhantomData,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<T: Instance> sealed::AdvancedChannel<T> for $channel<T> {
|
|
fn raw() -> usize {
|
|
$ch_num
|
|
}
|
|
}
|
|
impl<T: Instance> AdvancedChannel<T> for $channel<T> {}
|
|
};
|
|
}
|
|
|
|
advanced_channel_impl!(new_cha, ChA, 0, ChannelAPin, ChannelAComplementaryPin);
|
|
advanced_channel_impl!(new_chb, ChB, 1, ChannelBPin, ChannelBComplementaryPin);
|
|
advanced_channel_impl!(new_chc, ChC, 2, ChannelCPin, ChannelCComplementaryPin);
|
|
advanced_channel_impl!(new_chd, ChD, 3, ChannelDPin, ChannelDComplementaryPin);
|
|
advanced_channel_impl!(new_che, ChE, 4, ChannelEPin, ChannelEComplementaryPin);
|
|
#[cfg(hrtim_v2)]
|
|
advanced_channel_impl!(new_chf, ChF, 5, ChannelFPin, ChannelFComplementaryPin);
|
|
|
|
/// Struct used to divide a high resolution timer into multiple channels
|
|
pub struct AdvancedPwm<'d, T: Instance> {
|
|
_inner: PeripheralRef<'d, T>,
|
|
pub master: Master<T>,
|
|
pub burst_controller: BurstController<T>,
|
|
pub ch_a: ChA<T>,
|
|
pub ch_b: ChB<T>,
|
|
pub ch_c: ChC<T>,
|
|
pub ch_d: ChD<T>,
|
|
pub ch_e: ChE<T>,
|
|
#[cfg(hrtim_v2)]
|
|
pub ch_f: ChF<T>,
|
|
}
|
|
|
|
impl<'d, T: Instance> AdvancedPwm<'d, T> {
|
|
pub fn new(
|
|
tim: impl Peripheral<P = T> + 'd,
|
|
_cha: Option<PwmPin<'d, T, ChA<T>>>,
|
|
_chan: Option<ComplementaryPwmPin<'d, T, ChA<T>>>,
|
|
_chb: Option<PwmPin<'d, T, ChB<T>>>,
|
|
_chbn: Option<ComplementaryPwmPin<'d, T, ChB<T>>>,
|
|
_chc: Option<PwmPin<'d, T, ChC<T>>>,
|
|
_chcn: Option<ComplementaryPwmPin<'d, T, ChC<T>>>,
|
|
_chd: Option<PwmPin<'d, T, ChD<T>>>,
|
|
_chdn: Option<ComplementaryPwmPin<'d, T, ChD<T>>>,
|
|
_che: Option<PwmPin<'d, T, ChE<T>>>,
|
|
_chen: Option<ComplementaryPwmPin<'d, T, ChE<T>>>,
|
|
#[cfg(hrtim_v2)] _chf: Option<PwmPin<'d, T, ChF<T>>>,
|
|
#[cfg(hrtim_v2)] _chfn: Option<ComplementaryPwmPin<'d, T, ChF<T>>>,
|
|
) -> Self {
|
|
Self::new_inner(tim)
|
|
}
|
|
|
|
fn new_inner(tim: impl Peripheral<P = T> + 'd) -> Self {
|
|
into_ref!(tim);
|
|
|
|
T::enable();
|
|
<T as crate::rcc::sealed::RccPeripheral>::reset();
|
|
|
|
#[cfg(stm32f334)]
|
|
if unsafe { get_freqs() }.hrtim.is_some() {
|
|
// Enable and and stabilize the DLL
|
|
T::regs().dllcr().modify(|w| {
|
|
w.set_cal(true);
|
|
});
|
|
|
|
trace!("hrtim: wait for dll calibration");
|
|
while !T::regs().isr().read().dllrdy() {}
|
|
|
|
trace!("hrtim: dll calibration complete");
|
|
|
|
// Enable periodic calibration
|
|
// Cal must be disabled before we can enable it
|
|
T::regs().dllcr().modify(|w| {
|
|
w.set_cal(false);
|
|
});
|
|
|
|
T::regs().dllcr().modify(|w| {
|
|
w.set_calen(true);
|
|
w.set_calrte(11);
|
|
});
|
|
}
|
|
|
|
Self {
|
|
_inner: tim,
|
|
master: Master { phantom: PhantomData },
|
|
burst_controller: BurstController { phantom: PhantomData },
|
|
ch_a: ChA { phantom: PhantomData },
|
|
ch_b: ChB { phantom: PhantomData },
|
|
ch_c: ChC { phantom: PhantomData },
|
|
ch_d: ChD { phantom: PhantomData },
|
|
ch_e: ChE { phantom: PhantomData },
|
|
#[cfg(hrtim_v2)]
|
|
ch_f: ChF { phantom: PhantomData },
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<T: Instance> BurstController<T> {
|
|
pub fn set_source(&mut self, _source: Source) {
|
|
todo!("burst mode control registers not implemented")
|
|
}
|
|
}
|
|
|
|
/// Represents a fixed-frequency bridge converter
|
|
///
|
|
/// Our implementation of the bridge converter uses a single channel and three compare registers,
|
|
/// allowing implementation of a synchronous buck or boost converter in continuous or discontinuous
|
|
/// conduction mode.
|
|
///
|
|
/// It is important to remember that in synchronous topologies, energy can flow in reverse during
|
|
/// light loading conditions, and that the low-side switch must be active for a short time to drive
|
|
/// a bootstrapped high-side switch.
|
|
pub struct BridgeConverter<T: Instance, C: AdvancedChannel<T>> {
|
|
timer: PhantomData<T>,
|
|
channel: PhantomData<C>,
|
|
dead_time: u16,
|
|
primary_duty: u16,
|
|
min_secondary_duty: u16,
|
|
max_secondary_duty: u16,
|
|
}
|
|
|
|
impl<T: Instance, C: AdvancedChannel<T>> BridgeConverter<T, C> {
|
|
pub fn new(_channel: C, frequency: Hertz) -> Self {
|
|
use crate::pac::hrtim::vals::{Activeeffect, Inactiveeffect};
|
|
|
|
T::set_channel_frequency(C::raw(), frequency);
|
|
|
|
// Always enable preload
|
|
T::regs().tim(C::raw()).cr().modify(|w| {
|
|
w.set_preen(true);
|
|
w.set_repu(true);
|
|
w.set_cont(true);
|
|
});
|
|
|
|
// Enable timer outputs
|
|
T::regs().oenr().modify(|w| {
|
|
w.set_t1oen(C::raw(), true);
|
|
w.set_t2oen(C::raw(), true);
|
|
});
|
|
|
|
// The dead-time generation unit cannot be used because it forces the other output
|
|
// to be completely complementary to the first output, which restricts certain waveforms
|
|
// Therefore, software-implemented dead time must be used when setting the duty cycles
|
|
|
|
// Set output 1 to active on a period event
|
|
T::regs()
|
|
.tim(C::raw())
|
|
.setr(0)
|
|
.modify(|w| w.set_per(Activeeffect::SETACTIVE));
|
|
|
|
// Set output 1 to inactive on a compare 1 event
|
|
T::regs()
|
|
.tim(C::raw())
|
|
.rstr(0)
|
|
.modify(|w| w.set_cmp(0, Inactiveeffect::SETINACTIVE));
|
|
|
|
// Set output 2 to active on a compare 2 event
|
|
T::regs()
|
|
.tim(C::raw())
|
|
.setr(1)
|
|
.modify(|w| w.set_cmp(1, Activeeffect::SETACTIVE));
|
|
|
|
// Set output 2 to inactive on a compare 3 event
|
|
T::regs()
|
|
.tim(C::raw())
|
|
.rstr(1)
|
|
.modify(|w| w.set_cmp(2, Inactiveeffect::SETINACTIVE));
|
|
|
|
Self {
|
|
timer: PhantomData,
|
|
channel: PhantomData,
|
|
dead_time: 0,
|
|
primary_duty: 0,
|
|
min_secondary_duty: 0,
|
|
max_secondary_duty: 0,
|
|
}
|
|
}
|
|
|
|
pub fn start(&mut self) {
|
|
T::regs().mcr().modify(|w| w.set_tcen(C::raw(), true));
|
|
}
|
|
|
|
pub fn stop(&mut self) {
|
|
T::regs().mcr().modify(|w| w.set_tcen(C::raw(), false));
|
|
}
|
|
|
|
pub fn enable_burst_mode(&mut self) {
|
|
T::regs().tim(C::raw()).outr().modify(|w| {
|
|
// Enable Burst Mode
|
|
w.set_idlem(0, true);
|
|
w.set_idlem(1, true);
|
|
|
|
// Set output to active during the burst
|
|
w.set_idles(0, true);
|
|
w.set_idles(1, true);
|
|
})
|
|
}
|
|
|
|
pub fn disable_burst_mode(&mut self) {
|
|
T::regs().tim(C::raw()).outr().modify(|w| {
|
|
// Disable Burst Mode
|
|
w.set_idlem(0, false);
|
|
w.set_idlem(1, false);
|
|
})
|
|
}
|
|
|
|
fn update_primary_duty_or_dead_time(&mut self) {
|
|
self.min_secondary_duty = self.primary_duty + self.dead_time;
|
|
|
|
T::regs().tim(C::raw()).cmp(0).modify(|w| w.set_cmp(self.primary_duty));
|
|
T::regs()
|
|
.tim(C::raw())
|
|
.cmp(1)
|
|
.modify(|w| w.set_cmp(self.min_secondary_duty));
|
|
}
|
|
|
|
/// Set the dead time as a proportion of the maximum compare value
|
|
pub fn set_dead_time(&mut self, dead_time: u16) {
|
|
self.dead_time = dead_time;
|
|
self.max_secondary_duty = self.get_max_compare_value() - dead_time;
|
|
self.update_primary_duty_or_dead_time();
|
|
}
|
|
|
|
/// Get the maximum compare value of a duty cycle
|
|
pub fn get_max_compare_value(&mut self) -> u16 {
|
|
T::regs().tim(C::raw()).per().read().per()
|
|
}
|
|
|
|
/// The primary duty is the period in which the primary switch is active
|
|
///
|
|
/// In the case of a buck converter, this is the high-side switch
|
|
/// In the case of a boost converter, this is the low-side switch
|
|
pub fn set_primary_duty(&mut self, primary_duty: u16) {
|
|
self.primary_duty = primary_duty;
|
|
self.update_primary_duty_or_dead_time();
|
|
}
|
|
|
|
/// The secondary duty is the period in any switch is active
|
|
///
|
|
/// If less than or equal to the primary duty, the secondary switch will be active for one tick
|
|
/// If a fully complementary output is desired, the secondary duty can be set to the max compare
|
|
pub fn set_secondary_duty(&mut self, secondary_duty: u16) {
|
|
let secondary_duty = if secondary_duty > self.max_secondary_duty {
|
|
self.max_secondary_duty
|
|
} else if secondary_duty <= self.min_secondary_duty {
|
|
self.min_secondary_duty + 1
|
|
} else {
|
|
secondary_duty
|
|
};
|
|
|
|
T::regs().tim(C::raw()).cmp(2).modify(|w| w.set_cmp(secondary_duty));
|
|
}
|
|
}
|
|
|
|
/// Represents a variable-frequency resonant converter
|
|
///
|
|
/// This implementation of a resonsant converter is appropriate for a half or full bridge,
|
|
/// but does not include secondary rectification, which is appropriate for applications
|
|
/// with a low-voltage on the secondary side.
|
|
pub struct ResonantConverter<T: Instance, C: AdvancedChannel<T>> {
|
|
timer: PhantomData<T>,
|
|
channel: PhantomData<C>,
|
|
min_period: u16,
|
|
max_period: u16,
|
|
}
|
|
|
|
impl<T: Instance, C: AdvancedChannel<T>> ResonantConverter<T, C> {
|
|
pub fn new(_channel: C, min_frequency: Hertz, max_frequency: Hertz) -> Self {
|
|
T::set_channel_frequency(C::raw(), min_frequency);
|
|
|
|
// Always enable preload
|
|
T::regs().tim(C::raw()).cr().modify(|w| {
|
|
w.set_preen(true);
|
|
w.set_repu(true);
|
|
|
|
w.set_cont(true);
|
|
w.set_half(true);
|
|
});
|
|
|
|
// Enable timer outputs
|
|
T::regs().oenr().modify(|w| {
|
|
w.set_t1oen(C::raw(), true);
|
|
w.set_t2oen(C::raw(), true);
|
|
});
|
|
|
|
// Dead-time generator can be used in this case because the primary fets
|
|
// of a resonant converter are always complementary
|
|
T::regs().tim(C::raw()).outr().modify(|w| w.set_dten(true));
|
|
|
|
let max_period = T::regs().tim(C::raw()).per().read().per();
|
|
let min_period = max_period * (min_frequency.0 / max_frequency.0) as u16;
|
|
|
|
Self {
|
|
timer: PhantomData,
|
|
channel: PhantomData,
|
|
min_period: min_period,
|
|
max_period: max_period,
|
|
}
|
|
}
|
|
|
|
/// Set the dead time as a proportion of the maximum compare value
|
|
pub fn set_dead_time(&mut self, value: u16) {
|
|
T::set_channel_dead_time(C::raw(), value);
|
|
}
|
|
|
|
pub fn set_period(&mut self, period: u16) {
|
|
assert!(period < self.max_period);
|
|
assert!(period > self.min_period);
|
|
|
|
T::regs().tim(C::raw()).per().modify(|w| w.set_per(period));
|
|
}
|
|
|
|
/// Get the minimum compare value of a duty cycle
|
|
pub fn get_min_period(&mut self) -> u16 {
|
|
self.min_period
|
|
}
|
|
|
|
/// Get the maximum compare value of a duty cycle
|
|
pub fn get_max_period(&mut self) -> u16 {
|
|
self.max_period
|
|
}
|
|
}
|
|
|
|
pin_trait!(ChannelAPin, Instance);
|
|
pin_trait!(ChannelAComplementaryPin, Instance);
|
|
pin_trait!(ChannelBPin, Instance);
|
|
pin_trait!(ChannelBComplementaryPin, Instance);
|
|
pin_trait!(ChannelCPin, Instance);
|
|
pin_trait!(ChannelCComplementaryPin, Instance);
|
|
pin_trait!(ChannelDPin, Instance);
|
|
pin_trait!(ChannelDComplementaryPin, Instance);
|
|
pin_trait!(ChannelEPin, Instance);
|
|
pin_trait!(ChannelEComplementaryPin, Instance);
|
|
#[cfg(hrtim_v2)]
|
|
pin_trait!(ChannelFPin, Instance);
|
|
#[cfg(hrtim_v2)]
|
|
pin_trait!(ChannelFComplementaryPin, Instance);
|