ed2a87a262
Embassy-boot is a simple bootloader that works together with an application to provide firmware update capabilities with a minimal risk. The bootloader consists of a platform-independent part, which implements the swap algorithm, and a platform-dependent part (currently only for nRF) that provides addition functionality such as watchdog timers softdevice support.
551 lines
20 KiB
Rust
551 lines
20 KiB
Rust
#![feature(type_alias_impl_trait)]
|
|
#![feature(generic_associated_types)]
|
|
#![no_std]
|
|
///! embassy-boot is a bootloader and firmware updater for embedded devices with flash
|
|
///! storage implemented using embedded-storage
|
|
///!
|
|
///! The bootloader works in conjunction with the firmware application, and only has the
|
|
///! ability to manage two flash banks with an active and a updatable part. It implements
|
|
///! a swap algorithm that is power-failure safe, and allows reverting to the previous
|
|
///! version of the firmware, should the application crash and fail to mark itself as booted.
|
|
///!
|
|
///! This library is intended to be used by platform-specific bootloaders, such as embassy-boot-nrf,
|
|
///! which defines the limits and flash type for that particular platform.
|
|
///!
|
|
mod fmt;
|
|
|
|
use embedded_storage::nor_flash::{NorFlash, ReadNorFlash};
|
|
use embedded_storage_async::nor_flash::AsyncNorFlash;
|
|
|
|
pub const BOOT_MAGIC: u32 = 0xD00DF00D;
|
|
pub const SWAP_MAGIC: u32 = 0xF00FDAAD;
|
|
|
|
#[derive(Copy, Clone, Debug)]
|
|
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
|
pub struct Partition {
|
|
pub from: usize,
|
|
pub to: usize,
|
|
}
|
|
|
|
impl Partition {
|
|
pub const fn new(from: usize, to: usize) -> Self {
|
|
Self { from, to }
|
|
}
|
|
pub const fn len(&self) -> usize {
|
|
self.to - self.from
|
|
}
|
|
}
|
|
|
|
#[derive(PartialEq, Debug)]
|
|
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
|
pub enum State {
|
|
Boot,
|
|
Swap,
|
|
}
|
|
|
|
#[derive(PartialEq, Debug)]
|
|
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
|
pub enum BootError<E> {
|
|
Flash(E),
|
|
BadMagic,
|
|
}
|
|
|
|
impl<E> From<E> for BootError<E> {
|
|
fn from(error: E) -> Self {
|
|
BootError::Flash(error)
|
|
}
|
|
}
|
|
|
|
/// BootLoader works with any flash implementing embedded_storage and can also work with
|
|
/// different page sizes.
|
|
pub struct BootLoader<const PAGE_SIZE: usize> {
|
|
// Page with current state of bootloader. The state partition has the following format:
|
|
// | Range | Description |
|
|
// | 0 - 4 | Magic indicating bootloader state. BOOT_MAGIC means boot, SWAP_MAGIC means swap. |
|
|
// | 4 - N | Progress index used while swapping or reverting |
|
|
state: Partition,
|
|
// Location of the partition which will be booted from
|
|
active: Partition,
|
|
// Location of the partition which will be swapped in when requested
|
|
dfu: Partition,
|
|
}
|
|
|
|
impl<const PAGE_SIZE: usize> BootLoader<PAGE_SIZE> {
|
|
pub fn new(active: Partition, dfu: Partition, state: Partition) -> Self {
|
|
assert_eq!(active.len() % PAGE_SIZE, 0);
|
|
assert_eq!(dfu.len() % PAGE_SIZE, 0);
|
|
// DFU partition must have an extra page
|
|
assert!(dfu.len() - active.len() >= PAGE_SIZE);
|
|
// Ensure we have enough progress pages to store copy progress
|
|
assert!(active.len() / PAGE_SIZE >= (state.len() - 4) / PAGE_SIZE);
|
|
Self { active, dfu, state }
|
|
}
|
|
|
|
pub fn boot_address(&self) -> usize {
|
|
self.active.from
|
|
}
|
|
|
|
/// Perform necessary boot preparations like swapping images.
|
|
///
|
|
/// The DFU partition is assumed to be 1 page bigger than the active partition for the swap
|
|
/// algorithm to work correctly.
|
|
///
|
|
/// SWAPPING
|
|
///
|
|
/// Assume a flash size of 3 pages for the active partition, and 4 pages for the DFU partition.
|
|
/// The swap index contains the copy progress, as to allow continuation of the copy process on
|
|
/// power failure. The index counter is represented within 1 or more pages (depending on total
|
|
/// flash size), where a page X is considered swapped if index at location (X + WRITE_SIZE)
|
|
/// contains a zero value. This ensures that index updates can be performed atomically and
|
|
/// avoid a situation where the wrong index value is set (page write size is "atomic").
|
|
///
|
|
/// +-----------+------------+--------+--------+--------+--------+
|
|
/// | Partition | Swap Index | Page 0 | Page 1 | Page 3 | Page 4 |
|
|
/// +-----------+------------+--------+--------+--------+--------+
|
|
/// | Active | 0 | 1 | 2 | 3 | - |
|
|
/// | DFU | 0 | 3 | 2 | 1 | X |
|
|
/// +-----------+-------+--------+--------+--------+--------+
|
|
///
|
|
/// The algorithm starts by copying 'backwards', and after the first step, the layout is
|
|
/// as follows:
|
|
///
|
|
/// +-----------+------------+--------+--------+--------+--------+
|
|
/// | Partition | Swap Index | Page 0 | Page 1 | Page 3 | Page 4 |
|
|
/// +-----------+------------+--------+--------+--------+--------+
|
|
/// | Active | 1 | 1 | 2 | 1 | - |
|
|
/// | DFU | 1 | 3 | 2 | 1 | 3 |
|
|
/// +-----------+------------+--------+--------+--------+--------+
|
|
///
|
|
/// The next iteration performs the same steps
|
|
///
|
|
/// +-----------+------------+--------+--------+--------+--------+
|
|
/// | Partition | Swap Index | Page 0 | Page 1 | Page 3 | Page 4 |
|
|
/// +-----------+------------+--------+--------+--------+--------+
|
|
/// | Active | 2 | 1 | 2 | 1 | - |
|
|
/// | DFU | 2 | 3 | 2 | 2 | 3 |
|
|
/// +-----------+------------+--------+--------+--------+--------+
|
|
///
|
|
/// And again until we're done
|
|
///
|
|
/// +-----------+------------+--------+--------+--------+--------+
|
|
/// | Partition | Swap Index | Page 0 | Page 1 | Page 3 | Page 4 |
|
|
/// +-----------+------------+--------+--------+--------+--------+
|
|
/// | Active | 3 | 3 | 2 | 1 | - |
|
|
/// | DFU | 3 | 3 | 1 | 2 | 3 |
|
|
/// +-----------+------------+--------+--------+--------+--------+
|
|
///
|
|
/// REVERTING
|
|
///
|
|
/// The reverting algorithm uses the swap index to discover that images were swapped, but that
|
|
/// the application failed to mark the boot successful. In this case, the revert algorithm will
|
|
/// run.
|
|
///
|
|
/// The revert index is located separately from the swap index, to ensure that revert can continue
|
|
/// on power failure.
|
|
///
|
|
/// The revert algorithm works forwards, by starting copying into the 'unused' DFU page at the start.
|
|
///
|
|
/// +-----------+--------------+--------+--------+--------+--------+
|
|
/// | Partition | Revert Index | Page 0 | Page 1 | Page 3 | Page 4 |
|
|
//*/
|
|
/// +-----------+--------------+--------+--------+--------+--------+
|
|
/// | Active | 3 | 1 | 2 | 1 | - |
|
|
/// | DFU | 3 | 3 | 1 | 2 | 3 |
|
|
/// +-----------+--------------+--------+--------+--------+--------+
|
|
///
|
|
///
|
|
/// +-----------+--------------+--------+--------+--------+--------+
|
|
/// | Partition | Revert Index | Page 0 | Page 1 | Page 3 | Page 4 |
|
|
/// +-----------+--------------+--------+--------+--------+--------+
|
|
/// | Active | 3 | 1 | 2 | 1 | - |
|
|
/// | DFU | 3 | 3 | 2 | 2 | 3 |
|
|
/// +-----------+--------------+--------+--------+--------+--------+
|
|
///
|
|
/// +-----------+--------------+--------+--------+--------+--------+
|
|
/// | Partition | Revert Index | Page 0 | Page 1 | Page 3 | Page 4 |
|
|
/// +-----------+--------------+--------+--------+--------+--------+
|
|
/// | Active | 3 | 1 | 2 | 3 | - |
|
|
/// | DFU | 3 | 3 | 2 | 1 | 3 |
|
|
/// +-----------+--------------+--------+--------+--------+--------+
|
|
///
|
|
pub fn prepare_boot<F: NorFlash + ReadNorFlash>(
|
|
&mut self,
|
|
flash: &mut F,
|
|
) -> Result<State, BootError<F::Error>> {
|
|
// Copy contents from partition N to active
|
|
let state = self.read_state(flash)?;
|
|
match state {
|
|
State::Swap => {
|
|
//
|
|
// Check if we already swapped. If we're in the swap state, this means we should revert
|
|
// since the app has failed to mark boot as successful
|
|
//
|
|
if !self.is_swapped(flash)? {
|
|
trace!("Swapping");
|
|
self.swap(flash)?;
|
|
} else {
|
|
trace!("Reverting");
|
|
self.revert(flash)?;
|
|
|
|
// Overwrite magic and reset progress
|
|
flash.write(self.state.from as u32, &[0, 0, 0, 0])?;
|
|
flash.erase(self.state.from as u32, self.state.to as u32)?;
|
|
flash.write(self.state.from as u32, &BOOT_MAGIC.to_le_bytes())?;
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
Ok(state)
|
|
}
|
|
|
|
fn is_swapped<F: ReadNorFlash>(&mut self, flash: &mut F) -> Result<bool, F::Error> {
|
|
let page_count = self.active.len() / PAGE_SIZE;
|
|
let progress = self.current_progress(flash)?;
|
|
|
|
Ok(progress >= page_count * 2)
|
|
}
|
|
|
|
fn current_progress<F: ReadNorFlash>(&mut self, flash: &mut F) -> Result<usize, F::Error> {
|
|
let max_index = ((self.state.len() - 4) / 4) - 1;
|
|
for i in 0..max_index {
|
|
let mut buf: [u8; 4] = [0; 4];
|
|
flash.read((self.state.from + 4 + i * 4) as u32, &mut buf)?;
|
|
if buf == [0xFF, 0xFF, 0xFF, 0xFF] {
|
|
return Ok(i);
|
|
}
|
|
}
|
|
Ok(max_index)
|
|
}
|
|
|
|
fn update_progress<F: NorFlash>(&mut self, idx: usize, flash: &mut F) -> Result<(), F::Error> {
|
|
let w = self.state.from + 4 + idx * 4;
|
|
flash.write(w as u32, &[0, 0, 0, 0])?;
|
|
Ok(())
|
|
}
|
|
|
|
fn active_addr(&self, n: usize) -> usize {
|
|
self.active.from + n * PAGE_SIZE
|
|
}
|
|
|
|
fn dfu_addr(&self, n: usize) -> usize {
|
|
self.dfu.from + n * PAGE_SIZE
|
|
}
|
|
|
|
fn copy_page_once<F: NorFlash + ReadNorFlash>(
|
|
&mut self,
|
|
idx: usize,
|
|
from: usize,
|
|
to: usize,
|
|
flash: &mut F,
|
|
) -> Result<(), F::Error> {
|
|
let mut buf: [u8; PAGE_SIZE] = [0; PAGE_SIZE];
|
|
if self.current_progress(flash)? <= idx {
|
|
flash.read(from as u32, &mut buf)?;
|
|
flash.erase(to as u32, (to + PAGE_SIZE) as u32)?;
|
|
flash.write(to as u32, &buf)?;
|
|
self.update_progress(idx, flash)?;
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn swap<F: NorFlash + ReadNorFlash>(&mut self, flash: &mut F) -> Result<(), F::Error> {
|
|
let page_count = self.active.len() / PAGE_SIZE;
|
|
// trace!("Page count: {}", page_count);
|
|
for page in 0..page_count {
|
|
// Copy active page to the 'next' DFU page.
|
|
let active_page = self.active_addr(page_count - 1 - page);
|
|
let dfu_page = self.dfu_addr(page_count - page);
|
|
// info!("Copy active {} to dfu {}", active_page, dfu_page);
|
|
self.copy_page_once(page * 2, active_page, dfu_page, flash)?;
|
|
|
|
// Copy DFU page to the active page
|
|
let active_page = self.active_addr(page_count - 1 - page);
|
|
let dfu_page = self.dfu_addr(page_count - 1 - page);
|
|
//info!("Copy dfy {} to active {}", dfu_page, active_page);
|
|
self.copy_page_once(page * 2 + 1, dfu_page, active_page, flash)?;
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn revert<F: NorFlash + ReadNorFlash>(&mut self, flash: &mut F) -> Result<(), F::Error> {
|
|
let page_count = self.active.len() / PAGE_SIZE;
|
|
for page in 0..page_count {
|
|
// Copy the bad active page to the DFU page
|
|
let active_page = self.active_addr(page);
|
|
let dfu_page = self.dfu_addr(page);
|
|
self.copy_page_once(page_count * 2 + page * 2, active_page, dfu_page, flash)?;
|
|
|
|
// Copy the DFU page back to the active page
|
|
let active_page = self.active_addr(page);
|
|
let dfu_page = self.dfu_addr(page + 1);
|
|
self.copy_page_once(page_count * 2 + page * 2 + 1, dfu_page, active_page, flash)?;
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn read_state<F: ReadNorFlash>(&mut self, flash: &mut F) -> Result<State, BootError<F::Error>> {
|
|
let mut magic: [u8; 4] = [0; 4];
|
|
flash.read(self.state.from as u32, &mut magic)?;
|
|
|
|
match u32::from_le_bytes(magic) {
|
|
SWAP_MAGIC => Ok(State::Swap),
|
|
_ => Ok(State::Boot),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// FirmwareUpdater is an application API for interacting with the BootLoader without the ability to
|
|
/// 'mess up' the internal bootloader state
|
|
pub struct FirmwareUpdater {
|
|
state: Partition,
|
|
dfu: Partition,
|
|
}
|
|
|
|
impl FirmwareUpdater {
|
|
pub const fn new(dfu: Partition, state: Partition) -> Self {
|
|
Self { dfu, state }
|
|
}
|
|
|
|
/// Return the length of the DFU area
|
|
pub fn firmware_len(&self) -> usize {
|
|
self.dfu.len()
|
|
}
|
|
|
|
/// Instruct bootloader that DFU should commence at next boot.
|
|
pub async fn mark_update<F: AsyncNorFlash>(&mut self, flash: &mut F) -> Result<(), F::Error> {
|
|
flash.write(self.state.from as u32, &[0, 0, 0, 0]).await?;
|
|
flash
|
|
.erase(self.state.from as u32, self.state.to as u32)
|
|
.await?;
|
|
info!(
|
|
"Setting swap magic at {} to 0x{:x}, LE: 0x{:x}",
|
|
self.state.from,
|
|
&SWAP_MAGIC,
|
|
&SWAP_MAGIC.to_le_bytes()
|
|
);
|
|
flash
|
|
.write(self.state.from as u32, &SWAP_MAGIC.to_le_bytes())
|
|
.await?;
|
|
Ok(())
|
|
}
|
|
|
|
/// Mark firmware boot successfully
|
|
pub async fn mark_booted<F: AsyncNorFlash>(&mut self, flash: &mut F) -> Result<(), F::Error> {
|
|
flash.write(self.state.from as u32, &[0, 0, 0, 0]).await?;
|
|
flash
|
|
.erase(self.state.from as u32, self.state.to as u32)
|
|
.await?;
|
|
flash
|
|
.write(self.state.from as u32, &BOOT_MAGIC.to_le_bytes())
|
|
.await?;
|
|
Ok(())
|
|
}
|
|
|
|
// Write to a region of the DFU page
|
|
pub async fn write_firmware<F: AsyncNorFlash>(
|
|
&mut self,
|
|
offset: usize,
|
|
data: &[u8],
|
|
flash: &mut F,
|
|
) -> Result<(), F::Error> {
|
|
info!(
|
|
"Writing firmware at offset 0x{:x} len {}",
|
|
self.dfu.from + offset,
|
|
data.len()
|
|
);
|
|
|
|
flash
|
|
.erase(
|
|
(self.dfu.from + offset) as u32,
|
|
(self.dfu.from + offset + data.len()) as u32,
|
|
)
|
|
.await?;
|
|
flash.write((self.dfu.from + offset) as u32, data).await
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
use core::convert::Infallible;
|
|
use core::future::Future;
|
|
use embedded_storage_async::nor_flash::AsyncReadNorFlash;
|
|
use futures::executor::block_on;
|
|
|
|
const STATE: Partition = Partition::new(0, 4096);
|
|
const ACTIVE: Partition = Partition::new(4096, 61440);
|
|
const DFU: Partition = Partition::new(61440, 122880);
|
|
|
|
#[test]
|
|
fn test_bad_magic() {
|
|
let mut flash = MemFlash([0xff; 131072]);
|
|
|
|
let mut bootloader = BootLoader::<4096>::new(ACTIVE, DFU, STATE);
|
|
|
|
assert_eq!(
|
|
bootloader.prepare_boot(&mut flash),
|
|
Err(BootError::BadMagic)
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_boot_state() {
|
|
let mut flash = MemFlash([0xff; 131072]);
|
|
flash.0[0..4].copy_from_slice(&BOOT_MAGIC.to_le_bytes());
|
|
|
|
let mut bootloader = BootLoader::<4096>::new(ACTIVE, DFU, STATE);
|
|
|
|
assert_eq!(State::Boot, bootloader.prepare_boot(&mut flash).unwrap());
|
|
}
|
|
|
|
#[test]
|
|
fn test_swap_state() {
|
|
env_logger::init();
|
|
let mut flash = MemFlash([0xff; 131072]);
|
|
|
|
let original: [u8; ACTIVE.len()] = [rand::random::<u8>(); ACTIVE.len()];
|
|
let update: [u8; DFU.len()] = [rand::random::<u8>(); DFU.len()];
|
|
|
|
for i in ACTIVE.from..ACTIVE.to {
|
|
flash.0[i] = original[i - ACTIVE.from];
|
|
}
|
|
|
|
let mut bootloader = BootLoader::<4096>::new(ACTIVE, DFU, STATE);
|
|
let mut updater = FirmwareUpdater::new(DFU, STATE);
|
|
for i in (DFU.from..DFU.to).step_by(4) {
|
|
let base = i - DFU.from;
|
|
let data: [u8; 4] = [
|
|
update[base],
|
|
update[base + 1],
|
|
update[base + 2],
|
|
update[base + 3],
|
|
];
|
|
block_on(updater.write_firmware(i - DFU.from, &data, &mut flash)).unwrap();
|
|
}
|
|
block_on(updater.mark_update(&mut flash)).unwrap();
|
|
|
|
assert_eq!(State::Swap, bootloader.prepare_boot(&mut flash).unwrap());
|
|
|
|
for i in ACTIVE.from..ACTIVE.to {
|
|
assert_eq!(flash.0[i], update[i - ACTIVE.from], "Index {}", i);
|
|
}
|
|
|
|
// First DFU page is untouched
|
|
for i in DFU.from + 4096..DFU.to {
|
|
assert_eq!(flash.0[i], original[i - DFU.from - 4096], "Index {}", i);
|
|
}
|
|
|
|
// Running again should cause a revert
|
|
assert_eq!(State::Swap, bootloader.prepare_boot(&mut flash).unwrap());
|
|
|
|
for i in ACTIVE.from..ACTIVE.to {
|
|
assert_eq!(flash.0[i], original[i - ACTIVE.from], "Index {}", i);
|
|
}
|
|
|
|
// Last page is untouched
|
|
for i in DFU.from..DFU.to - 4096 {
|
|
assert_eq!(flash.0[i], update[i - DFU.from], "Index {}", i);
|
|
}
|
|
|
|
// Mark as booted
|
|
block_on(updater.mark_booted(&mut flash)).unwrap();
|
|
assert_eq!(State::Boot, bootloader.prepare_boot(&mut flash).unwrap());
|
|
}
|
|
|
|
struct MemFlash([u8; 131072]);
|
|
|
|
impl NorFlash for MemFlash {
|
|
const WRITE_SIZE: usize = 4;
|
|
const ERASE_SIZE: usize = 4096;
|
|
fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> {
|
|
let from = from as usize;
|
|
let to = to as usize;
|
|
for i in from..to {
|
|
self.0[i] = 0xFF;
|
|
self.0[i] = 0xFF;
|
|
self.0[i] = 0xFF;
|
|
self.0[i] = 0xFF;
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn write(&mut self, offset: u32, data: &[u8]) -> Result<(), Self::Error> {
|
|
assert!(data.len() % 4 == 0);
|
|
assert!(offset % 4 == 0);
|
|
assert!(offset as usize + data.len() < 131072);
|
|
|
|
self.0[offset as usize..offset as usize + data.len()].copy_from_slice(data);
|
|
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl ReadNorFlash for MemFlash {
|
|
const READ_SIZE: usize = 4;
|
|
type Error = Infallible;
|
|
|
|
fn read(&mut self, offset: u32, buf: &mut [u8]) -> Result<(), Self::Error> {
|
|
let len = buf.len();
|
|
buf[..].copy_from_slice(&self.0[offset as usize..offset as usize + len]);
|
|
Ok(())
|
|
}
|
|
|
|
fn capacity(&self) -> usize {
|
|
131072
|
|
}
|
|
}
|
|
|
|
impl AsyncReadNorFlash for MemFlash {
|
|
const READ_SIZE: usize = 4;
|
|
type Error = Infallible;
|
|
|
|
type ReadFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a;
|
|
fn read<'a>(&'a mut self, offset: usize, buf: &'a mut [u8]) -> Self::ReadFuture<'a> {
|
|
async move {
|
|
let len = buf.len();
|
|
buf[..].copy_from_slice(&self.0[offset as usize..offset as usize + len]);
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
fn capacity(&self) -> usize {
|
|
131072
|
|
}
|
|
}
|
|
|
|
impl AsyncNorFlash for MemFlash {
|
|
const WRITE_SIZE: usize = 4;
|
|
const ERASE_SIZE: usize = 4096;
|
|
|
|
type EraseFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a;
|
|
fn erase<'a>(&'a mut self, from: u32, to: u32) -> Self::EraseFuture<'a> {
|
|
async move {
|
|
let from = from as usize;
|
|
let to = to as usize;
|
|
for i in from..to {
|
|
self.0[i] = 0xFF;
|
|
self.0[i] = 0xFF;
|
|
self.0[i] = 0xFF;
|
|
self.0[i] = 0xFF;
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
type WriteFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a;
|
|
fn write<'a>(&'a mut self, offset: u32, data: &'a [u8]) -> Self::WriteFuture<'a> {
|
|
async move {
|
|
assert!(data.len() % 4 == 0);
|
|
assert!(offset % 4 == 0);
|
|
assert!(offset as usize + data.len() < 131072);
|
|
|
|
self.0[offset as usize..offset as usize + data.len()].copy_from_slice(data);
|
|
|
|
Ok(())
|
|
}
|
|
}
|
|
}
|
|
}
|