Alex Ferro 4883fdd154 Add a STM32/DMARingBuffer::read_exact helper
This provides a helper function with an async implementation, that
will only return (or error) when it was able to read that many bytes,
sleeping until ready.

Additionally, corrected the documentation for Ringbuffer functions to use
"elements" instead of "bytes" as the types were already generic over the
word/element size.
2023-07-22 17:17:01 -06:00

562 lines
17 KiB
Rust

#![macro_use]
use core::future::Future;
use core::pin::Pin;
use core::sync::atomic::{fence, Ordering};
use core::task::{Context, Poll, Waker};
use atomic_polyfill::AtomicUsize;
use embassy_hal_common::{into_ref, Peripheral, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
use super::ringbuffer::{DmaCtrl, DmaRingBuffer, OverrunError};
use super::word::{Word, WordSize};
use super::Dir;
use crate::_generated::BDMA_CHANNEL_COUNT;
use crate::interrupt::typelevel::Interrupt;
use crate::interrupt::Priority;
use crate::pac;
use crate::pac::bdma::{regs, vals};
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub struct TransferOptions {
/// Enable circular DMA
pub circular: bool,
/// Enable half transfer interrupt
pub half_transfer_ir: bool,
/// Enable transfer complete interrupt
pub complete_transfer_ir: bool,
}
impl Default for TransferOptions {
fn default() -> Self {
Self {
circular: false,
half_transfer_ir: false,
complete_transfer_ir: true,
}
}
}
impl From<WordSize> for vals::Size {
fn from(raw: WordSize) -> Self {
match raw {
WordSize::OneByte => Self::BITS8,
WordSize::TwoBytes => Self::BITS16,
WordSize::FourBytes => Self::BITS32,
}
}
}
impl From<Dir> for vals::Dir {
fn from(raw: Dir) -> Self {
match raw {
Dir::MemoryToPeripheral => Self::FROMMEMORY,
Dir::PeripheralToMemory => Self::FROMPERIPHERAL,
}
}
}
struct State {
ch_wakers: [AtomicWaker; BDMA_CHANNEL_COUNT],
complete_count: [AtomicUsize; BDMA_CHANNEL_COUNT],
}
impl State {
const fn new() -> Self {
const ZERO: AtomicUsize = AtomicUsize::new(0);
const AW: AtomicWaker = AtomicWaker::new();
Self {
ch_wakers: [AW; BDMA_CHANNEL_COUNT],
complete_count: [ZERO; BDMA_CHANNEL_COUNT],
}
}
}
static STATE: State = State::new();
/// safety: must be called only once
pub(crate) unsafe fn init(irq_priority: Priority) {
foreach_interrupt! {
($peri:ident, bdma, $block:ident, $signal_name:ident, $irq:ident) => {
crate::interrupt::typelevel::$irq::set_priority(irq_priority);
crate::interrupt::typelevel::$irq::enable();
};
}
crate::_generated::init_bdma();
}
foreach_dma_channel! {
($channel_peri:ident, BDMA1, bdma, $channel_num:expr, $index:expr, $dmamux:tt) => {
// BDMA1 in H7 doesn't use DMAMUX, which breaks
};
($channel_peri:ident, $dma_peri:ident, bdma, $channel_num:expr, $index:expr, $dmamux:tt) => {
impl sealed::Channel for crate::peripherals::$channel_peri {
fn regs(&self) -> pac::bdma::Dma {
pac::$dma_peri
}
fn num(&self) -> usize {
$channel_num
}
fn index(&self) -> usize {
$index
}
fn on_irq() {
unsafe { on_irq_inner(pac::$dma_peri, $channel_num, $index) }
}
}
impl Channel for crate::peripherals::$channel_peri {}
};
}
/// Safety: Must be called with a matching set of parameters for a valid dma channel
pub(crate) unsafe fn on_irq_inner(dma: pac::bdma::Dma, channel_num: usize, index: usize) {
let isr = dma.isr().read();
let cr = dma.ch(channel_num).cr();
if isr.teif(channel_num) {
panic!("DMA: error on BDMA@{:08x} channel {}", dma.as_ptr() as u32, channel_num);
}
if isr.htif(channel_num) && cr.read().htie() {
// Acknowledge half transfer complete interrupt
dma.ifcr().write(|w| w.set_htif(channel_num, true));
} else if isr.tcif(channel_num) && cr.read().tcie() {
// Acknowledge transfer complete interrupt
dma.ifcr().write(|w| w.set_tcif(channel_num, true));
STATE.complete_count[index].fetch_add(1, Ordering::Release);
} else {
return;
}
STATE.ch_wakers[index].wake();
}
#[cfg(any(bdma_v2, dmamux))]
pub type Request = u8;
#[cfg(not(any(bdma_v2, dmamux)))]
pub type Request = ();
#[cfg(dmamux)]
pub trait Channel: sealed::Channel + Peripheral<P = Self> + 'static + super::dmamux::MuxChannel {}
#[cfg(not(dmamux))]
pub trait Channel: sealed::Channel + Peripheral<P = Self> + 'static {}
pub(crate) mod sealed {
use super::*;
pub trait Channel {
fn regs(&self) -> pac::bdma::Dma;
fn num(&self) -> usize;
fn index(&self) -> usize;
fn on_irq();
}
}
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct Transfer<'a, C: Channel> {
channel: PeripheralRef<'a, C>,
}
impl<'a, C: Channel> Transfer<'a, C> {
pub unsafe fn new_read<W: Word>(
channel: impl Peripheral<P = C> + 'a,
request: Request,
peri_addr: *mut W,
buf: &'a mut [W],
options: TransferOptions,
) -> Self {
Self::new_read_raw(channel, request, peri_addr, buf, options)
}
pub unsafe fn new_read_raw<W: Word>(
channel: impl Peripheral<P = C> + 'a,
request: Request,
peri_addr: *mut W,
buf: *mut [W],
options: TransferOptions,
) -> Self {
into_ref!(channel);
let (ptr, len) = super::slice_ptr_parts_mut(buf);
assert!(len > 0 && len <= 0xFFFF);
Self::new_inner(
channel,
request,
Dir::PeripheralToMemory,
peri_addr as *const u32,
ptr as *mut u32,
len,
true,
W::size(),
options,
)
}
pub unsafe fn new_write<W: Word>(
channel: impl Peripheral<P = C> + 'a,
request: Request,
buf: &'a [W],
peri_addr: *mut W,
options: TransferOptions,
) -> Self {
Self::new_write_raw(channel, request, buf, peri_addr, options)
}
pub unsafe fn new_write_raw<W: Word>(
channel: impl Peripheral<P = C> + 'a,
request: Request,
buf: *const [W],
peri_addr: *mut W,
options: TransferOptions,
) -> Self {
into_ref!(channel);
let (ptr, len) = super::slice_ptr_parts(buf);
assert!(len > 0 && len <= 0xFFFF);
Self::new_inner(
channel,
request,
Dir::MemoryToPeripheral,
peri_addr as *const u32,
ptr as *mut u32,
len,
true,
W::size(),
options,
)
}
pub unsafe fn new_write_repeated<W: Word>(
channel: impl Peripheral<P = C> + 'a,
request: Request,
repeated: &'a W,
count: usize,
peri_addr: *mut W,
options: TransferOptions,
) -> Self {
into_ref!(channel);
Self::new_inner(
channel,
request,
Dir::MemoryToPeripheral,
peri_addr as *const u32,
repeated as *const W as *mut u32,
count,
false,
W::size(),
options,
)
}
unsafe fn new_inner(
channel: PeripheralRef<'a, C>,
_request: Request,
dir: Dir,
peri_addr: *const u32,
mem_addr: *mut u32,
mem_len: usize,
incr_mem: bool,
data_size: WordSize,
options: TransferOptions,
) -> Self {
let ch = channel.regs().ch(channel.num());
// "Preceding reads and writes cannot be moved past subsequent writes."
fence(Ordering::SeqCst);
#[cfg(bdma_v2)]
critical_section::with(|_| channel.regs().cselr().modify(|w| w.set_cs(channel.num(), _request)));
let mut this = Self { channel };
this.clear_irqs();
STATE.complete_count[this.channel.index()].store(0, Ordering::Release);
#[cfg(dmamux)]
super::dmamux::configure_dmamux(&mut *this.channel, _request);
ch.par().write_value(peri_addr as u32);
ch.mar().write_value(mem_addr as u32);
ch.ndtr().write(|w| w.set_ndt(mem_len as u16));
ch.cr().write(|w| {
w.set_psize(data_size.into());
w.set_msize(data_size.into());
if incr_mem {
w.set_minc(vals::Inc::ENABLED);
} else {
w.set_minc(vals::Inc::DISABLED);
}
w.set_dir(dir.into());
w.set_teie(true);
w.set_tcie(options.complete_transfer_ir);
w.set_htie(options.half_transfer_ir);
if options.circular {
w.set_circ(vals::Circ::ENABLED);
debug!("Setting circular mode");
} else {
w.set_circ(vals::Circ::DISABLED);
}
w.set_pl(vals::Pl::VERYHIGH);
w.set_en(true);
});
this
}
fn clear_irqs(&mut self) {
self.channel.regs().ifcr().write(|w| {
w.set_tcif(self.channel.num(), true);
w.set_teif(self.channel.num(), true);
});
}
pub fn request_stop(&mut self) {
let ch = self.channel.regs().ch(self.channel.num());
// Disable the channel. Keep the IEs enabled so the irqs still fire.
ch.cr().write(|w| {
w.set_teie(true);
w.set_tcie(true);
});
}
pub fn is_running(&mut self) -> bool {
let ch = self.channel.regs().ch(self.channel.num());
let en = ch.cr().read().en();
let circular = ch.cr().read().circ() == vals::Circ::ENABLED;
let tcif = STATE.complete_count[self.channel.index()].load(Ordering::Acquire) != 0;
en && (circular || !tcif)
}
/// Gets the total remaining transfers for the channel
/// Note: this will be zero for transfers that completed without cancellation.
pub fn get_remaining_transfers(&self) -> u16 {
let ch = self.channel.regs().ch(self.channel.num());
ch.ndtr().read().ndt()
}
pub fn blocking_wait(mut self) {
while self.is_running() {}
self.request_stop();
// "Subsequent reads and writes cannot be moved ahead of preceding reads."
fence(Ordering::SeqCst);
core::mem::forget(self);
}
}
impl<'a, C: Channel> Drop for Transfer<'a, C> {
fn drop(&mut self) {
self.request_stop();
while self.is_running() {}
// "Subsequent reads and writes cannot be moved ahead of preceding reads."
fence(Ordering::SeqCst);
}
}
impl<'a, C: Channel> Unpin for Transfer<'a, C> {}
impl<'a, C: Channel> Future for Transfer<'a, C> {
type Output = ();
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
STATE.ch_wakers[self.channel.index()].register(cx.waker());
if self.is_running() {
Poll::Pending
} else {
Poll::Ready(())
}
}
}
// ==============================
struct DmaCtrlImpl<'a, C: Channel>(PeripheralRef<'a, C>);
impl<'a, C: Channel> DmaCtrl for DmaCtrlImpl<'a, C> {
fn get_remaining_transfers(&self) -> usize {
let ch = self.0.regs().ch(self.0.num());
ch.ndtr().read().ndt() as usize
}
fn get_complete_count(&self) -> usize {
STATE.complete_count[self.0.index()].load(Ordering::Acquire)
}
fn reset_complete_count(&mut self) -> usize {
STATE.complete_count[self.0.index()].swap(0, Ordering::AcqRel)
}
}
pub struct RingBuffer<'a, C: Channel, W: Word> {
cr: regs::Cr,
channel: PeripheralRef<'a, C>,
ringbuf: DmaRingBuffer<'a, W>,
}
impl<'a, C: Channel, W: Word> RingBuffer<'a, C, W> {
pub unsafe fn new_read(
channel: impl Peripheral<P = C> + 'a,
_request: Request,
peri_addr: *mut W,
buffer: &'a mut [W],
_options: TransferOptions,
) -> Self {
into_ref!(channel);
let len = buffer.len();
assert!(len > 0 && len <= 0xFFFF);
let dir = Dir::PeripheralToMemory;
let data_size = W::size();
let channel_number = channel.num();
let dma = channel.regs();
// "Preceding reads and writes cannot be moved past subsequent writes."
fence(Ordering::SeqCst);
#[cfg(bdma_v2)]
critical_section::with(|_| channel.regs().cselr().modify(|w| w.set_cs(channel.num(), _request)));
let mut w = regs::Cr(0);
w.set_psize(data_size.into());
w.set_msize(data_size.into());
w.set_minc(vals::Inc::ENABLED);
w.set_dir(dir.into());
w.set_teie(true);
w.set_htie(true);
w.set_tcie(true);
w.set_circ(vals::Circ::ENABLED);
w.set_pl(vals::Pl::VERYHIGH);
w.set_en(true);
let buffer_ptr = buffer.as_mut_ptr();
let mut this = Self {
channel,
cr: w,
ringbuf: DmaRingBuffer::new(buffer),
};
this.clear_irqs();
#[cfg(dmamux)]
super::dmamux::configure_dmamux(&mut *this.channel, _request);
let ch = dma.ch(channel_number);
ch.par().write_value(peri_addr as u32);
ch.mar().write_value(buffer_ptr as u32);
ch.ndtr().write(|w| w.set_ndt(len as u16));
this
}
pub fn start(&mut self) {
let ch = self.channel.regs().ch(self.channel.num());
ch.cr().write_value(self.cr)
}
pub fn clear(&mut self) {
self.ringbuf.clear(DmaCtrlImpl(self.channel.reborrow()));
}
/// Read elements from the ring buffer
/// Return a tuple of the length read and the length remaining in the buffer
/// If not all of the elements were read, then there will be some elements in the buffer remaining
/// The length remaining is the capacity, ring_buf.len(), less the elements remaining after the read
/// OverrunError is returned if the portion to be read was overwritten by the DMA controller.
pub fn read(&mut self, buf: &mut [W]) -> Result<(usize, usize), OverrunError> {
self.ringbuf.read(DmaCtrlImpl(self.channel.reborrow()), buf)
}
/// Read an exact number of elements from the ringbuffer.
///
/// Returns the remaining number of elements available for immediate reading.
/// OverrunError is returned if the portion to be read was overwritten by the DMA controller.
///
/// Async/Wake Behavior:
/// The underlying DMA peripheral only can wake us when its buffer pointer has reached the halfway point,
/// and when it wraps around. This means that when called with a buffer of length 'M', when this
/// ring buffer was created with a buffer of size 'N':
/// - If M equals N/2 or N/2 divides evenly into M, this function will return every N/2 elements read on the DMA source.
/// - Otherwise, this function may need up to N/2 extra elements to arrive before returning.
pub async fn read_exact(&mut self, buffer: &mut [W]) -> Result<usize, OverrunError> {
use core::future::poll_fn;
use core::sync::atomic::compiler_fence;
let mut read_data = 0;
let buffer_len = buffer.len();
poll_fn(|cx| {
self.set_waker(cx.waker());
compiler_fence(Ordering::SeqCst);
match self.read(&mut buffer[read_data..buffer_len]) {
Ok((len, remaining)) => {
read_data += len;
if read_data == buffer_len {
Poll::Ready(Ok(remaining))
} else {
Poll::Pending
}
}
Err(e) => Poll::Ready(Err(e)),
}
})
.await
}
/// The capacity of the ringbuffer
pub fn cap(&self) -> usize {
self.ringbuf.cap()
}
pub fn set_waker(&mut self, waker: &Waker) {
STATE.ch_wakers[self.channel.index()].register(waker);
}
fn clear_irqs(&mut self) {
let dma = self.channel.regs();
dma.ifcr().write(|w| {
w.set_htif(self.channel.num(), true);
w.set_tcif(self.channel.num(), true);
w.set_teif(self.channel.num(), true);
});
}
pub fn request_stop(&mut self) {
let ch = self.channel.regs().ch(self.channel.num());
// Disable the channel. Keep the IEs enabled so the irqs still fire.
// If the channel is enabled and transfer is not completed, we need to perform
// two separate write access to the CR register to disable the channel.
ch.cr().write(|w| {
w.set_teie(true);
w.set_htie(true);
w.set_tcie(true);
});
}
pub fn is_running(&mut self) -> bool {
let ch = self.channel.regs().ch(self.channel.num());
ch.cr().read().en()
}
}
impl<'a, C: Channel, W: Word> Drop for RingBuffer<'a, C, W> {
fn drop(&mut self) {
self.request_stop();
while self.is_running() {}
// "Subsequent reads and writes cannot be moved ahead of preceding reads."
fence(Ordering::SeqCst);
}
}