embassy/embassy-rp/src/clocks.rs
pennae 3c5f011245 rp: add generic dormant-sleep functionality
this is "generic" in that it doesn't require the user to set up anything
specific to go to dormant sleep, unlike the C sdk which requires clock
sources to be configured explicitly and doesn't much care about PLLs. we
will instead take a snapshot of the current clock configuration, switch
to a known clock source (very slow rosc, in this case), go to sleep, and
on wakeup undo everything we've done (ensuring stability of PLLs and
such).

tested locally, but adding tests to HIL seems infeasible. we'd need at
least another pico or extensive modifications to teleprobe since
dormant-sleep breaks SWD (except to rescue-dp), neither of which is
feasible at this point. if we *did* want to add tests we should check
for both rtc wakeups (with an external rtc clock source) and gpio wakeups.
2023-08-05 00:57:29 +02:00

1006 lines
32 KiB
Rust

use core::arch::asm;
use core::marker::PhantomData;
use core::sync::atomic::{AtomicU16, AtomicU32, Ordering};
use embassy_hal_internal::{into_ref, PeripheralRef};
use pac::clocks::vals::*;
use crate::gpio::sealed::Pin;
use crate::gpio::AnyPin;
use crate::pac::common::{Reg, RW};
use crate::{pac, reset, Peripheral};
// NOTE: all gpin handling is commented out for future reference.
// gpin is not usually safe to use during the boot init() call, so it won't
// be very useful until we have runtime clock reconfiguration. once this
// happens we can resurrect the commented-out gpin bits.
struct Clocks {
xosc: AtomicU32,
sys: AtomicU32,
reference: AtomicU32,
pll_sys: AtomicU32,
pll_usb: AtomicU32,
usb: AtomicU32,
adc: AtomicU32,
// gpin0: AtomicU32,
// gpin1: AtomicU32,
rosc: AtomicU32,
peri: AtomicU32,
rtc: AtomicU16,
}
static CLOCKS: Clocks = Clocks {
xosc: AtomicU32::new(0),
sys: AtomicU32::new(0),
reference: AtomicU32::new(0),
pll_sys: AtomicU32::new(0),
pll_usb: AtomicU32::new(0),
usb: AtomicU32::new(0),
adc: AtomicU32::new(0),
// gpin0: AtomicU32::new(0),
// gpin1: AtomicU32::new(0),
rosc: AtomicU32::new(0),
peri: AtomicU32::new(0),
rtc: AtomicU16::new(0),
};
#[repr(u8)]
#[non_exhaustive]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum PeriClkSrc {
Sys = ClkPeriCtrlAuxsrc::CLK_SYS as _,
PllSys = ClkPeriCtrlAuxsrc::CLKSRC_PLL_SYS as _,
PllUsb = ClkPeriCtrlAuxsrc::CLKSRC_PLL_USB as _,
Rosc = ClkPeriCtrlAuxsrc::ROSC_CLKSRC_PH as _,
Xosc = ClkPeriCtrlAuxsrc::XOSC_CLKSRC as _,
// Gpin0 = ClkPeriCtrlAuxsrc::CLKSRC_GPIN0 as _ ,
// Gpin1 = ClkPeriCtrlAuxsrc::CLKSRC_GPIN1 as _ ,
}
#[non_exhaustive]
pub struct ClockConfig {
pub rosc: Option<RoscConfig>,
pub xosc: Option<XoscConfig>,
pub ref_clk: RefClkConfig,
pub sys_clk: SysClkConfig,
pub peri_clk_src: Option<PeriClkSrc>,
pub usb_clk: Option<UsbClkConfig>,
pub adc_clk: Option<AdcClkConfig>,
pub rtc_clk: Option<RtcClkConfig>,
// gpin0: Option<(u32, Gpin<'static, AnyPin>)>,
// gpin1: Option<(u32, Gpin<'static, AnyPin>)>,
}
impl ClockConfig {
pub fn crystal(crystal_hz: u32) -> Self {
Self {
rosc: Some(RoscConfig {
hz: 6_500_000,
range: RoscRange::Medium,
drive_strength: [0; 8],
div: 16,
}),
xosc: Some(XoscConfig {
hz: crystal_hz,
sys_pll: Some(PllConfig {
refdiv: 1,
fbdiv: 125,
post_div1: 6,
post_div2: 2,
}),
usb_pll: Some(PllConfig {
refdiv: 1,
fbdiv: 120,
post_div1: 6,
post_div2: 5,
}),
}),
ref_clk: RefClkConfig {
src: RefClkSrc::Xosc,
div: 1,
},
sys_clk: SysClkConfig {
src: SysClkSrc::PllSys,
div_int: 1,
div_frac: 0,
},
peri_clk_src: Some(PeriClkSrc::Sys),
// CLK USB = PLL USB (48MHz) / 1 = 48MHz
usb_clk: Some(UsbClkConfig {
src: UsbClkSrc::PllUsb,
div: 1,
phase: 0,
}),
// CLK ADC = PLL USB (48MHZ) / 1 = 48MHz
adc_clk: Some(AdcClkConfig {
src: AdcClkSrc::PllUsb,
div: 1,
phase: 0,
}),
// CLK RTC = PLL USB (48MHz) / 1024 = 46875Hz
rtc_clk: Some(RtcClkConfig {
src: RtcClkSrc::PllUsb,
div_int: 1024,
div_frac: 0,
phase: 0,
}),
// gpin0: None,
// gpin1: None,
}
}
pub fn rosc() -> Self {
Self {
rosc: Some(RoscConfig {
hz: 140_000_000,
range: RoscRange::High,
drive_strength: [0; 8],
div: 1,
}),
xosc: None,
ref_clk: RefClkConfig {
src: RefClkSrc::Rosc,
div: 1,
},
sys_clk: SysClkConfig {
src: SysClkSrc::Rosc,
div_int: 1,
div_frac: 0,
},
peri_clk_src: Some(PeriClkSrc::Rosc),
usb_clk: None,
// CLK ADC = ROSC (140MHz) / 3 ≅ 48MHz
adc_clk: Some(AdcClkConfig {
src: AdcClkSrc::Rosc,
div: 3,
phase: 0,
}),
// CLK RTC = ROSC (140MHz) / 2986.667969 ≅ 46875Hz
rtc_clk: Some(RtcClkConfig {
src: RtcClkSrc::Rosc,
div_int: 2986,
div_frac: 171,
phase: 0,
}),
// gpin0: None,
// gpin1: None,
}
}
// pub fn bind_gpin<P: GpinPin>(&mut self, gpin: Gpin<'static, P>, hz: u32) {
// match P::NR {
// 0 => self.gpin0 = Some((hz, gpin.map_into())),
// 1 => self.gpin1 = Some((hz, gpin.map_into())),
// _ => unreachable!(),
// }
// // pin is now provisionally bound. if the config is applied it must be forgotten,
// // or Gpin::drop will deconfigure the clock input.
// }
}
#[repr(u16)]
#[non_exhaustive]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum RoscRange {
Low = pac::rosc::vals::FreqRange::LOW.0,
Medium = pac::rosc::vals::FreqRange::MEDIUM.0,
High = pac::rosc::vals::FreqRange::HIGH.0,
TooHigh = pac::rosc::vals::FreqRange::TOOHIGH.0,
}
pub struct RoscConfig {
/// Final frequency of the oscillator, after the divider has been applied.
/// The oscillator has a nominal frequency of 6.5MHz at medium range with
/// divider 16 and all drive strengths set to 0, other values should be
/// measured in situ.
pub hz: u32,
pub range: RoscRange,
pub drive_strength: [u8; 8],
pub div: u16,
}
pub struct XoscConfig {
pub hz: u32,
pub sys_pll: Option<PllConfig>,
pub usb_pll: Option<PllConfig>,
}
pub struct PllConfig {
pub refdiv: u8,
pub fbdiv: u16,
pub post_div1: u8,
pub post_div2: u8,
}
pub struct RefClkConfig {
pub src: RefClkSrc,
pub div: u8,
}
#[non_exhaustive]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum RefClkSrc {
// main sources
Xosc,
Rosc,
// aux sources
PllUsb,
// Gpin0,
// Gpin1,
}
#[non_exhaustive]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum SysClkSrc {
// main sources
Ref,
// aux sources
PllSys,
PllUsb,
Rosc,
Xosc,
// Gpin0,
// Gpin1,
}
pub struct SysClkConfig {
pub src: SysClkSrc,
pub div_int: u32,
pub div_frac: u8,
}
#[repr(u8)]
#[non_exhaustive]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum UsbClkSrc {
PllUsb = ClkUsbCtrlAuxsrc::CLKSRC_PLL_USB as _,
PllSys = ClkUsbCtrlAuxsrc::CLKSRC_PLL_SYS as _,
Rosc = ClkUsbCtrlAuxsrc::ROSC_CLKSRC_PH as _,
Xosc = ClkUsbCtrlAuxsrc::XOSC_CLKSRC as _,
// Gpin0 = ClkUsbCtrlAuxsrc::CLKSRC_GPIN0 as _ ,
// Gpin1 = ClkUsbCtrlAuxsrc::CLKSRC_GPIN1 as _ ,
}
pub struct UsbClkConfig {
pub src: UsbClkSrc,
pub div: u8,
pub phase: u8,
}
#[repr(u8)]
#[non_exhaustive]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum AdcClkSrc {
PllUsb = ClkAdcCtrlAuxsrc::CLKSRC_PLL_USB as _,
PllSys = ClkAdcCtrlAuxsrc::CLKSRC_PLL_SYS as _,
Rosc = ClkAdcCtrlAuxsrc::ROSC_CLKSRC_PH as _,
Xosc = ClkAdcCtrlAuxsrc::XOSC_CLKSRC as _,
// Gpin0 = ClkAdcCtrlAuxsrc::CLKSRC_GPIN0 as _ ,
// Gpin1 = ClkAdcCtrlAuxsrc::CLKSRC_GPIN1 as _ ,
}
pub struct AdcClkConfig {
pub src: AdcClkSrc,
pub div: u8,
pub phase: u8,
}
#[repr(u8)]
#[non_exhaustive]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum RtcClkSrc {
PllUsb = ClkRtcCtrlAuxsrc::CLKSRC_PLL_USB as _,
PllSys = ClkRtcCtrlAuxsrc::CLKSRC_PLL_SYS as _,
Rosc = ClkRtcCtrlAuxsrc::ROSC_CLKSRC_PH as _,
Xosc = ClkRtcCtrlAuxsrc::XOSC_CLKSRC as _,
// Gpin0 = ClkRtcCtrlAuxsrc::CLKSRC_GPIN0 as _ ,
// Gpin1 = ClkRtcCtrlAuxsrc::CLKSRC_GPIN1 as _ ,
}
pub struct RtcClkConfig {
pub src: RtcClkSrc,
pub div_int: u32,
pub div_frac: u8,
pub phase: u8,
}
/// safety: must be called exactly once at bootup
pub(crate) unsafe fn init(config: ClockConfig) {
// Reset everything except:
// - QSPI (we're using it to run this code!)
// - PLLs (it may be suicide if that's what's clocking us)
// - USB, SYSCFG (breaks usb-to-swd on core1)
// - RTC (else there would be no more time...)
let mut peris = reset::ALL_PERIPHERALS;
peris.set_io_qspi(false);
// peris.set_io_bank0(false); // might be suicide if we're clocked from gpin
peris.set_pads_qspi(false);
peris.set_pll_sys(false);
peris.set_pll_usb(false);
// TODO investigate if usb should be unreset here
peris.set_usbctrl(false);
peris.set_syscfg(false);
peris.set_rtc(false);
reset::reset(peris);
// Disable resus that may be enabled from previous software
let c = pac::CLOCKS;
c.clk_sys_resus_ctrl()
.write_value(pac::clocks::regs::ClkSysResusCtrl(0));
// Before we touch PLLs, switch sys and ref cleanly away from their aux sources.
c.clk_sys_ctrl().modify(|w| w.set_src(ClkSysCtrlSrc::CLK_REF));
while c.clk_sys_selected().read() != 1 {}
c.clk_ref_ctrl().modify(|w| w.set_src(ClkRefCtrlSrc::ROSC_CLKSRC_PH));
while c.clk_ref_selected().read() != 1 {}
// Reset the PLLs
let mut peris = reset::Peripherals(0);
peris.set_pll_sys(true);
peris.set_pll_usb(true);
reset::reset(peris);
reset::unreset_wait(peris);
// let gpin0_freq = config.gpin0.map_or(0, |p| {
// core::mem::forget(p.1);
// p.0
// });
// CLOCKS.gpin0.store(gpin0_freq, Ordering::Relaxed);
// let gpin1_freq = config.gpin1.map_or(0, |p| {
// core::mem::forget(p.1);
// p.0
// });
// CLOCKS.gpin1.store(gpin1_freq, Ordering::Relaxed);
let rosc_freq = match config.rosc {
Some(config) => configure_rosc(config),
None => 0,
};
CLOCKS.rosc.store(rosc_freq, Ordering::Relaxed);
let (xosc_freq, pll_sys_freq, pll_usb_freq) = match config.xosc {
Some(config) => {
// start XOSC
// datasheet mentions support for clock inputs into XIN, but doesn't go into
// how this is achieved. pico-sdk doesn't support this at all.
start_xosc(config.hz);
let pll_sys_freq = match config.sys_pll {
Some(sys_pll_config) => configure_pll(pac::PLL_SYS, config.hz, sys_pll_config),
None => 0,
};
let pll_usb_freq = match config.usb_pll {
Some(usb_pll_config) => configure_pll(pac::PLL_USB, config.hz, usb_pll_config),
None => 0,
};
(config.hz, pll_sys_freq, pll_usb_freq)
}
None => (0, 0, 0),
};
CLOCKS.xosc.store(xosc_freq, Ordering::Relaxed);
CLOCKS.pll_sys.store(pll_sys_freq, Ordering::Relaxed);
CLOCKS.pll_usb.store(pll_usb_freq, Ordering::Relaxed);
let (ref_src, ref_aux, clk_ref_freq) = {
use {ClkRefCtrlAuxsrc as Aux, ClkRefCtrlSrc as Src};
let div = config.ref_clk.div as u32;
assert!(div >= 1 && div <= 4);
match config.ref_clk.src {
RefClkSrc::Xosc => (Src::XOSC_CLKSRC, Aux::CLKSRC_PLL_USB, xosc_freq / div),
RefClkSrc::Rosc => (Src::ROSC_CLKSRC_PH, Aux::CLKSRC_PLL_USB, rosc_freq / div),
RefClkSrc::PllUsb => (Src::CLKSRC_CLK_REF_AUX, Aux::CLKSRC_PLL_USB, pll_usb_freq / div),
// RefClkSrc::Gpin0 => (Src::CLKSRC_CLK_REF_AUX, Aux::CLKSRC_GPIN0, gpin0_freq / div),
// RefClkSrc::Gpin1 => (Src::CLKSRC_CLK_REF_AUX, Aux::CLKSRC_GPIN1, gpin1_freq / div),
}
};
assert!(clk_ref_freq != 0);
CLOCKS.reference.store(clk_ref_freq, Ordering::Relaxed);
c.clk_ref_ctrl().write(|w| {
w.set_src(ref_src);
w.set_auxsrc(ref_aux);
});
while c.clk_ref_selected().read() != 1 << ref_src as u32 {}
c.clk_ref_div().write(|w| {
w.set_int(config.ref_clk.div);
});
pac::WATCHDOG.tick().write(|w| {
w.set_cycles((clk_ref_freq / 1_000_000) as u16);
w.set_enable(true);
});
let (sys_src, sys_aux, clk_sys_freq) = {
use {ClkSysCtrlAuxsrc as Aux, ClkSysCtrlSrc as Src};
let (src, aux, freq) = match config.sys_clk.src {
SysClkSrc::Ref => (Src::CLK_REF, Aux::CLKSRC_PLL_SYS, clk_ref_freq),
SysClkSrc::PllSys => (Src::CLKSRC_CLK_SYS_AUX, Aux::CLKSRC_PLL_SYS, pll_sys_freq),
SysClkSrc::PllUsb => (Src::CLKSRC_CLK_SYS_AUX, Aux::CLKSRC_PLL_USB, pll_usb_freq),
SysClkSrc::Rosc => (Src::CLKSRC_CLK_SYS_AUX, Aux::ROSC_CLKSRC, rosc_freq),
SysClkSrc::Xosc => (Src::CLKSRC_CLK_SYS_AUX, Aux::XOSC_CLKSRC, xosc_freq),
// SysClkSrc::Gpin0 => (Src::CLKSRC_CLK_SYS_AUX, Aux::CLKSRC_GPIN0, gpin0_freq),
// SysClkSrc::Gpin1 => (Src::CLKSRC_CLK_SYS_AUX, Aux::CLKSRC_GPIN1, gpin1_freq),
};
assert!(config.sys_clk.div_int <= 0x1000000);
let div = config.sys_clk.div_int as u64 * 256 + config.sys_clk.div_frac as u64;
(src, aux, ((freq as u64 * 256) / div) as u32)
};
assert!(clk_sys_freq != 0);
CLOCKS.sys.store(clk_sys_freq, Ordering::Relaxed);
if sys_src != ClkSysCtrlSrc::CLK_REF {
c.clk_sys_ctrl().write(|w| w.set_src(ClkSysCtrlSrc::CLK_REF));
while c.clk_sys_selected().read() != 1 << ClkSysCtrlSrc::CLK_REF as u32 {}
}
c.clk_sys_ctrl().write(|w| {
w.set_auxsrc(sys_aux);
w.set_src(sys_src);
});
while c.clk_sys_selected().read() != 1 << sys_src as u32 {}
c.clk_sys_div().write(|w| {
w.set_int(config.sys_clk.div_int);
w.set_frac(config.sys_clk.div_frac);
});
let mut peris = reset::ALL_PERIPHERALS;
if let Some(src) = config.peri_clk_src {
c.clk_peri_ctrl().write(|w| {
w.set_enable(true);
w.set_auxsrc(ClkPeriCtrlAuxsrc::from_bits(src as _));
});
let peri_freq = match src {
PeriClkSrc::Sys => clk_sys_freq,
PeriClkSrc::PllSys => pll_sys_freq,
PeriClkSrc::PllUsb => pll_usb_freq,
PeriClkSrc::Rosc => rosc_freq,
PeriClkSrc::Xosc => xosc_freq,
// PeriClkSrc::Gpin0 => gpin0_freq,
// PeriClkSrc::Gpin1 => gpin1_freq,
};
assert!(peri_freq != 0);
CLOCKS.peri.store(peri_freq, Ordering::Relaxed);
} else {
peris.set_spi0(false);
peris.set_spi1(false);
peris.set_uart0(false);
peris.set_uart1(false);
CLOCKS.peri.store(0, Ordering::Relaxed);
}
if let Some(conf) = config.usb_clk {
c.clk_usb_div().write(|w| w.set_int(conf.div));
c.clk_usb_ctrl().write(|w| {
w.set_phase(conf.phase);
w.set_enable(true);
w.set_auxsrc(ClkUsbCtrlAuxsrc::from_bits(conf.src as _));
});
let usb_freq = match conf.src {
UsbClkSrc::PllUsb => pll_usb_freq,
UsbClkSrc::PllSys => pll_sys_freq,
UsbClkSrc::Rosc => rosc_freq,
UsbClkSrc::Xosc => xosc_freq,
// UsbClkSrc::Gpin0 => gpin0_freq,
// UsbClkSrc::Gpin1 => gpin1_freq,
};
assert!(usb_freq != 0);
assert!(conf.div >= 1 && conf.div <= 4);
CLOCKS.usb.store(usb_freq / conf.div as u32, Ordering::Relaxed);
} else {
peris.set_usbctrl(false);
CLOCKS.usb.store(0, Ordering::Relaxed);
}
if let Some(conf) = config.adc_clk {
c.clk_adc_div().write(|w| w.set_int(conf.div));
c.clk_adc_ctrl().write(|w| {
w.set_phase(conf.phase);
w.set_enable(true);
w.set_auxsrc(ClkAdcCtrlAuxsrc::from_bits(conf.src as _));
});
let adc_in_freq = match conf.src {
AdcClkSrc::PllUsb => pll_usb_freq,
AdcClkSrc::PllSys => pll_sys_freq,
AdcClkSrc::Rosc => rosc_freq,
AdcClkSrc::Xosc => xosc_freq,
// AdcClkSrc::Gpin0 => gpin0_freq,
// AdcClkSrc::Gpin1 => gpin1_freq,
};
assert!(adc_in_freq != 0);
assert!(conf.div >= 1 && conf.div <= 4);
CLOCKS.adc.store(adc_in_freq / conf.div as u32, Ordering::Relaxed);
} else {
peris.set_adc(false);
CLOCKS.adc.store(0, Ordering::Relaxed);
}
if let Some(conf) = config.rtc_clk {
c.clk_rtc_div().write(|w| {
w.set_int(conf.div_int);
w.set_frac(conf.div_frac);
});
c.clk_rtc_ctrl().write(|w| {
w.set_phase(conf.phase);
w.set_enable(true);
w.set_auxsrc(ClkRtcCtrlAuxsrc::from_bits(conf.src as _));
});
let rtc_in_freq = match conf.src {
RtcClkSrc::PllUsb => pll_usb_freq,
RtcClkSrc::PllSys => pll_sys_freq,
RtcClkSrc::Rosc => rosc_freq,
RtcClkSrc::Xosc => xosc_freq,
// RtcClkSrc::Gpin0 => gpin0_freq,
// RtcClkSrc::Gpin1 => gpin1_freq,
};
assert!(rtc_in_freq != 0);
assert!(config.sys_clk.div_int <= 0x1000000);
CLOCKS.rtc.store(
((rtc_in_freq as u64 * 256) / (conf.div_int as u64 * 256 + conf.div_frac as u64)) as u16,
Ordering::Relaxed,
);
} else {
peris.set_rtc(false);
CLOCKS.rtc.store(0, Ordering::Relaxed);
}
// Peripheral clocks should now all be running
reset::unreset_wait(peris);
}
fn configure_rosc(config: RoscConfig) -> u32 {
let p = pac::ROSC;
p.freqa().write(|w| {
w.set_passwd(pac::rosc::vals::Passwd::PASS);
w.set_ds0(config.drive_strength[0]);
w.set_ds1(config.drive_strength[1]);
w.set_ds2(config.drive_strength[2]);
w.set_ds3(config.drive_strength[3]);
});
p.freqb().write(|w| {
w.set_passwd(pac::rosc::vals::Passwd::PASS);
w.set_ds4(config.drive_strength[4]);
w.set_ds5(config.drive_strength[5]);
w.set_ds6(config.drive_strength[6]);
w.set_ds7(config.drive_strength[7]);
});
p.div().write(|w| {
w.set_div(pac::rosc::vals::Div(config.div + pac::rosc::vals::Div::PASS.0));
});
p.ctrl().write(|w| {
w.set_enable(pac::rosc::vals::Enable::ENABLE);
w.set_freq_range(pac::rosc::vals::FreqRange(config.range as u16));
});
config.hz
}
pub fn rosc_freq() -> u32 {
CLOCKS.rosc.load(Ordering::Relaxed)
}
pub fn xosc_freq() -> u32 {
CLOCKS.xosc.load(Ordering::Relaxed)
}
// pub fn gpin0_freq() -> u32 {
// CLOCKS.gpin0.load(Ordering::Relaxed)
// }
// pub fn gpin1_freq() -> u32 {
// CLOCKS.gpin1.load(Ordering::Relaxed)
// }
pub fn pll_sys_freq() -> u32 {
CLOCKS.pll_sys.load(Ordering::Relaxed)
}
pub fn pll_usb_freq() -> u32 {
CLOCKS.pll_usb.load(Ordering::Relaxed)
}
pub fn clk_sys_freq() -> u32 {
CLOCKS.sys.load(Ordering::Relaxed)
}
pub fn clk_ref_freq() -> u32 {
CLOCKS.reference.load(Ordering::Relaxed)
}
pub fn clk_peri_freq() -> u32 {
CLOCKS.peri.load(Ordering::Relaxed)
}
pub fn clk_usb_freq() -> u32 {
CLOCKS.usb.load(Ordering::Relaxed)
}
pub fn clk_adc_freq() -> u32 {
CLOCKS.adc.load(Ordering::Relaxed)
}
pub fn clk_rtc_freq() -> u16 {
CLOCKS.rtc.load(Ordering::Relaxed)
}
fn start_xosc(crystal_hz: u32) {
pac::XOSC
.ctrl()
.write(|w| w.set_freq_range(pac::xosc::vals::CtrlFreqRange::_1_15MHZ));
let startup_delay = ((crystal_hz / 1000) + 128) / 256;
pac::XOSC.startup().write(|w| w.set_delay(startup_delay as u16));
pac::XOSC.ctrl().write(|w| {
w.set_freq_range(pac::xosc::vals::CtrlFreqRange::_1_15MHZ);
w.set_enable(pac::xosc::vals::Enable::ENABLE);
});
while !pac::XOSC.status().read().stable() {}
}
#[inline(always)]
fn configure_pll(p: pac::pll::Pll, input_freq: u32, config: PllConfig) -> u32 {
let ref_freq = input_freq / config.refdiv as u32;
assert!(config.fbdiv >= 16 && config.fbdiv <= 320);
assert!(config.post_div1 >= 1 && config.post_div1 <= 7);
assert!(config.post_div2 >= 1 && config.post_div2 <= 7);
assert!(config.refdiv >= 1 && config.refdiv <= 63);
assert!(ref_freq >= 5_000_000 && ref_freq <= 800_000_000);
let vco_freq = ref_freq.saturating_mul(config.fbdiv as u32);
assert!(vco_freq >= 750_000_000 && vco_freq <= 1800_000_000);
// Load VCO-related dividers before starting VCO
p.cs().write(|w| w.set_refdiv(config.refdiv as _));
p.fbdiv_int().write(|w| w.set_fbdiv_int(config.fbdiv));
// Turn on PLL
let pwr = p.pwr().write(|w| {
w.set_dsmpd(true); // "nothing is achieved by setting this low"
w.set_pd(false);
w.set_vcopd(false);
w.set_postdivpd(true);
*w
});
// Wait for PLL to lock
while !p.cs().read().lock() {}
// Set post-dividers
p.prim().write(|w| {
w.set_postdiv1(config.post_div1);
w.set_postdiv2(config.post_div2);
});
// Turn on post divider
p.pwr().write(|w| {
*w = pwr;
w.set_postdivpd(false);
});
vco_freq / ((config.post_div1 * config.post_div2) as u32)
}
pub trait GpinPin: crate::gpio::Pin {
const NR: usize;
}
macro_rules! impl_gpinpin {
($name:ident, $pin_num:expr, $gpin_num:expr) => {
impl GpinPin for crate::peripherals::$name {
const NR: usize = $gpin_num;
}
};
}
impl_gpinpin!(PIN_20, 20, 0);
impl_gpinpin!(PIN_22, 22, 1);
pub struct Gpin<'d, T: Pin> {
gpin: PeripheralRef<'d, AnyPin>,
_phantom: PhantomData<T>,
}
impl<'d, T: Pin> Gpin<'d, T> {
pub fn new<P: GpinPin>(gpin: impl Peripheral<P = P> + 'd) -> Gpin<'d, P> {
into_ref!(gpin);
gpin.gpio().ctrl().write(|w| w.set_funcsel(0x08));
Gpin {
gpin: gpin.map_into(),
_phantom: PhantomData,
}
}
// fn map_into(self) -> Gpin<'d, AnyPin> {
// unsafe { core::mem::transmute(self) }
// }
}
impl<'d, T: Pin> Drop for Gpin<'d, T> {
fn drop(&mut self) {
self.gpin
.gpio()
.ctrl()
.write(|w| w.set_funcsel(pac::io::vals::Gpio0ctrlFuncsel::NULL as _));
}
}
pub trait GpoutPin: crate::gpio::Pin {
fn number(&self) -> usize;
}
macro_rules! impl_gpoutpin {
($name:ident, $gpout_num:expr) => {
impl GpoutPin for crate::peripherals::$name {
fn number(&self) -> usize {
$gpout_num
}
}
};
}
impl_gpoutpin!(PIN_21, 0);
impl_gpoutpin!(PIN_23, 1);
impl_gpoutpin!(PIN_24, 2);
impl_gpoutpin!(PIN_25, 3);
#[repr(u8)]
pub enum GpoutSrc {
PllSys = ClkGpoutCtrlAuxsrc::CLKSRC_PLL_SYS as _,
// Gpin0 = ClkGpoutCtrlAuxsrc::CLKSRC_GPIN0 as _ ,
// Gpin1 = ClkGpoutCtrlAuxsrc::CLKSRC_GPIN1 as _ ,
PllUsb = ClkGpoutCtrlAuxsrc::CLKSRC_PLL_USB as _,
Rosc = ClkGpoutCtrlAuxsrc::ROSC_CLKSRC as _,
Xosc = ClkGpoutCtrlAuxsrc::XOSC_CLKSRC as _,
Sys = ClkGpoutCtrlAuxsrc::CLK_SYS as _,
Usb = ClkGpoutCtrlAuxsrc::CLK_USB as _,
Adc = ClkGpoutCtrlAuxsrc::CLK_ADC as _,
Rtc = ClkGpoutCtrlAuxsrc::CLK_RTC as _,
Ref = ClkGpoutCtrlAuxsrc::CLK_REF as _,
}
pub struct Gpout<'d, T: GpoutPin> {
gpout: PeripheralRef<'d, T>,
}
impl<'d, T: GpoutPin> Gpout<'d, T> {
pub fn new(gpout: impl Peripheral<P = T> + 'd) -> Self {
into_ref!(gpout);
gpout.gpio().ctrl().write(|w| w.set_funcsel(0x08));
Self { gpout }
}
pub fn set_div(&self, int: u32, frac: u8) {
let c = pac::CLOCKS;
c.clk_gpout_div(self.gpout.number()).write(|w| {
w.set_int(int);
w.set_frac(frac);
});
}
pub fn set_src(&self, src: GpoutSrc) {
let c = pac::CLOCKS;
c.clk_gpout_ctrl(self.gpout.number()).modify(|w| {
w.set_auxsrc(ClkGpoutCtrlAuxsrc::from_bits(src as _));
});
}
pub fn enable(&self) {
let c = pac::CLOCKS;
c.clk_gpout_ctrl(self.gpout.number()).modify(|w| {
w.set_enable(true);
});
}
pub fn disable(&self) {
let c = pac::CLOCKS;
c.clk_gpout_ctrl(self.gpout.number()).modify(|w| {
w.set_enable(false);
});
}
pub fn get_freq(&self) -> u32 {
let c = pac::CLOCKS;
let src = c.clk_gpout_ctrl(self.gpout.number()).read().auxsrc();
let base = match src {
ClkGpoutCtrlAuxsrc::CLKSRC_PLL_SYS => pll_sys_freq(),
// ClkGpoutCtrlAuxsrc::CLKSRC_GPIN0 => gpin0_freq(),
// ClkGpoutCtrlAuxsrc::CLKSRC_GPIN1 => gpin1_freq(),
ClkGpoutCtrlAuxsrc::CLKSRC_PLL_USB => pll_usb_freq(),
ClkGpoutCtrlAuxsrc::ROSC_CLKSRC => rosc_freq(),
ClkGpoutCtrlAuxsrc::XOSC_CLKSRC => xosc_freq(),
ClkGpoutCtrlAuxsrc::CLK_SYS => clk_sys_freq(),
ClkGpoutCtrlAuxsrc::CLK_USB => clk_usb_freq(),
ClkGpoutCtrlAuxsrc::CLK_ADC => clk_adc_freq(),
ClkGpoutCtrlAuxsrc::CLK_RTC => clk_rtc_freq() as _,
ClkGpoutCtrlAuxsrc::CLK_REF => clk_ref_freq(),
_ => unreachable!(),
};
let div = c.clk_gpout_div(self.gpout.number()).read();
let int = if div.int() == 0 { 65536 } else { div.int() } as u64;
let frac = div.frac() as u64;
((base as u64 * 256) / (int * 256 + frac)) as u32
}
}
impl<'d, T: GpoutPin> Drop for Gpout<'d, T> {
fn drop(&mut self) {
self.disable();
self.gpout
.gpio()
.ctrl()
.write(|w| w.set_funcsel(pac::io::vals::Gpio0ctrlFuncsel::NULL as _));
}
}
/// Random number generator based on the ROSC RANDOMBIT register.
///
/// This will not produce random values if the ROSC is stopped or run at some
/// harmonic of the bus frequency. With default clock settings these are not
/// issues.
pub struct RoscRng;
impl RoscRng {
fn next_u8() -> u8 {
let random_reg = pac::ROSC.randombit();
let mut acc = 0;
for _ in 0..u8::BITS {
acc <<= 1;
acc |= random_reg.read().randombit() as u8;
}
acc
}
}
impl rand_core::RngCore for RoscRng {
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand_core::Error> {
Ok(self.fill_bytes(dest))
}
fn next_u32(&mut self) -> u32 {
rand_core::impls::next_u32_via_fill(self)
}
fn next_u64(&mut self) -> u64 {
rand_core::impls::next_u64_via_fill(self)
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
dest.fill_with(Self::next_u8)
}
}
/// Enter the `DORMANT` sleep state. This will stop *all* internal clocks
/// and can only be exited through resets, dormant-wake GPIO interrupts,
/// and RTC interrupts. If RTC is clocked from an internal clock source
/// it will be stopped and not function as a wakeup source.
#[cfg(target_arch = "arm")]
pub fn dormant_sleep() {
struct Set<T: Copy, F: Fn()>(Reg<T, RW>, T, F);
impl<T: Copy, F: Fn()> Drop for Set<T, F> {
fn drop(&mut self) {
self.0.write_value(self.1);
self.2();
}
}
fn set_with_post_restore<T: Copy, After: Fn(), F: FnOnce(&mut T) -> After>(
reg: Reg<T, RW>,
f: F,
) -> Set<T, impl Fn()> {
reg.modify(|w| {
let old = *w;
let after = f(w);
Set(reg, old, after)
})
}
fn set<T: Copy, F: FnOnce(&mut T)>(reg: Reg<T, RW>, f: F) -> Set<T, impl Fn()> {
set_with_post_restore(reg, |r| {
f(r);
|| ()
})
}
// disable all clocks that are not vital in preparation for disabling clock sources.
// we'll keep gpout and rtc clocks untouched, gpout because we don't care about them
// and rtc because it's a possible wakeup source. if clk_rtc is not configured for
// gpin we'll never wake from rtc, but that's what the user asked for then.
let _stop_adc = set(pac::CLOCKS.clk_adc_ctrl(), |w| w.set_enable(false));
let _stop_usb = set(pac::CLOCKS.clk_usb_ctrl(), |w| w.set_enable(false));
let _stop_peri = set(pac::CLOCKS.clk_peri_ctrl(), |w| w.set_enable(false));
// set up rosc. we could ask the use to tell us which clock source to wake from like
// the C SDK does, but that seems rather unfriendly. we *may* disturb rtc by changing
// rosc configuration if it's currently the rtc clock source, so we'll configure rosc
// to the slowest frequency to minimize that impact.
let _configure_rosc = (
set(pac::ROSC.ctrl(), |w| {
w.set_enable(pac::rosc::vals::Enable::ENABLE);
w.set_freq_range(pac::rosc::vals::FreqRange::LOW);
}),
// div=32
set(pac::ROSC.div(), |w| w.set_div(pac::rosc::vals::Div(0xaa0))),
);
while !pac::ROSC.status().read().stable() {}
// switch over to rosc as the system clock source. this will change clock sources for
// watchdog and timer clocks, but timers won't be a concern and the watchdog won't
// speed up by enough to worry about (unless it's clocked from gpin, which we don't
// support anyway).
let _switch_clk_ref = set(pac::CLOCKS.clk_ref_ctrl(), |w| {
w.set_src(pac::clocks::vals::ClkRefCtrlSrc::ROSC_CLKSRC_PH);
});
let _switch_clk_sys = set(pac::CLOCKS.clk_sys_ctrl(), |w| {
w.set_src(pac::clocks::vals::ClkSysCtrlSrc::CLK_REF);
});
// oscillator dormancy does not power down plls, we have to do that ourselves. we'll
// restore them to their prior glory when woken though since the system may be clocked
// from either (and usb/adc will probably need the USB PLL anyway)
let _stop_pll_sys = set_with_post_restore(pac::PLL_SYS.pwr(), |w| {
let wake = !w.pd() && !w.vcopd();
w.set_pd(true);
w.set_vcopd(true);
move || while wake && !pac::PLL_SYS.cs().read().lock() {}
});
let _stop_pll_usb = set_with_post_restore(pac::PLL_USB.pwr(), |w| {
let wake = !w.pd() && !w.vcopd();
w.set_pd(true);
w.set_vcopd(true);
move || while wake && !pac::PLL_USB.cs().read().lock() {}
});
// dormancy only stops the oscillator we're telling to go dormant, the other remains
// running. nothing can use xosc at this point any more. not doing this costs an 200µA.
let _stop_xosc = set_with_post_restore(pac::XOSC.ctrl(), |w| {
let wake = w.enable() == pac::xosc::vals::Enable::ENABLE;
if wake {
w.set_enable(pac::xosc::vals::Enable::DISABLE);
}
move || while wake && !pac::XOSC.status().read().stable() {}
});
let _power_down_xip_cache = set(pac::XIP_CTRL.ctrl(), |w| w.set_power_down(true));
// only power down memory if we're running from XIP (or ROM? how?).
// powering down memory otherwise would require a lot of exacting checks that
// are better done by the user in a local copy of this function.
// powering down memories saves ~100µA, so it's well worth doing.
unsafe {
let is_in_flash = {
// we can't rely on the address of this function as rust sees it since linker
// magic or even boot2 may place it into ram.
let pc: usize;
asm!(
"mov {pc}, pc",
pc = out (reg) pc
);
pc < 0x20000000
};
if is_in_flash {
// we will be powering down memories, so we must be *absolutely*
// certain that we're running entirely from XIP and registers until
// memories are powered back up again. accessing memory that's powered
// down may corrupt memory contents (see section 2.11.4 of the manual).
// additionally a 20ns wait time is needed after powering up memories
// again. rosc is likely to run at only a few MHz at most, so the
// inter-instruction delay alone will be enough to satisfy this bound.
asm!(
"ldr {old_mem}, [{mempowerdown}]",
"str {power_down_mems}, [{mempowerdown}]",
"str {coma}, [{dormant}]",
"str {old_mem}, [{mempowerdown}]",
old_mem = out (reg) _,
mempowerdown = in (reg) pac::SYSCFG.mempowerdown().as_ptr(),
power_down_mems = in (reg) 0b11111111,
dormant = in (reg) pac::ROSC.dormant().as_ptr(),
coma = in (reg) 0x636f6d61,
);
} else {
pac::ROSC.dormant().write_value(0x636f6d61);
}
}
}