7b838d0336
This gets rid of another PeripheralMutex usage.
731 lines
22 KiB
Rust
731 lines
22 KiB
Rust
use core::marker::PhantomData;
|
|
|
|
use embassy_hal_common::{into_ref, PeripheralRef};
|
|
|
|
use crate::dma::{AnyChannel, Channel};
|
|
use crate::gpio::sealed::Pin;
|
|
use crate::gpio::AnyPin;
|
|
use crate::{pac, peripherals, Peripheral};
|
|
|
|
#[cfg(feature = "nightly")]
|
|
mod buffered;
|
|
#[cfg(feature = "nightly")]
|
|
pub use buffered::{BufferedUart, BufferedUartRx, BufferedUartTx};
|
|
|
|
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
|
|
pub enum DataBits {
|
|
DataBits5,
|
|
DataBits6,
|
|
DataBits7,
|
|
DataBits8,
|
|
}
|
|
|
|
impl DataBits {
|
|
fn bits(&self) -> u8 {
|
|
match self {
|
|
Self::DataBits5 => 0b00,
|
|
Self::DataBits6 => 0b01,
|
|
Self::DataBits7 => 0b10,
|
|
Self::DataBits8 => 0b11,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
|
|
pub enum Parity {
|
|
ParityNone,
|
|
ParityEven,
|
|
ParityOdd,
|
|
}
|
|
|
|
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
|
|
pub enum StopBits {
|
|
#[doc = "1 stop bit"]
|
|
STOP1,
|
|
#[doc = "2 stop bits"]
|
|
STOP2,
|
|
}
|
|
|
|
#[non_exhaustive]
|
|
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
|
|
pub struct Config {
|
|
pub baudrate: u32,
|
|
pub data_bits: DataBits,
|
|
pub stop_bits: StopBits,
|
|
pub parity: Parity,
|
|
}
|
|
|
|
impl Default for Config {
|
|
fn default() -> Self {
|
|
Self {
|
|
baudrate: 115200,
|
|
data_bits: DataBits::DataBits8,
|
|
stop_bits: StopBits::STOP1,
|
|
parity: Parity::ParityNone,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Serial error
|
|
#[derive(Debug, Eq, PartialEq, Copy, Clone)]
|
|
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
|
#[non_exhaustive]
|
|
pub enum Error {
|
|
/// Triggered when the FIFO (or shift-register) is overflowed.
|
|
Overrun,
|
|
/// Triggered when a break is received
|
|
Break,
|
|
/// Triggered when there is a parity mismatch between what's received and
|
|
/// our settings.
|
|
Parity,
|
|
/// Triggered when the received character didn't have a valid stop bit.
|
|
Framing,
|
|
}
|
|
|
|
pub struct Uart<'d, T: Instance, M: Mode> {
|
|
tx: UartTx<'d, T, M>,
|
|
rx: UartRx<'d, T, M>,
|
|
}
|
|
|
|
pub struct UartTx<'d, T: Instance, M: Mode> {
|
|
tx_dma: Option<PeripheralRef<'d, AnyChannel>>,
|
|
phantom: PhantomData<(&'d mut T, M)>,
|
|
}
|
|
|
|
pub struct UartRx<'d, T: Instance, M: Mode> {
|
|
rx_dma: Option<PeripheralRef<'d, AnyChannel>>,
|
|
phantom: PhantomData<(&'d mut T, M)>,
|
|
}
|
|
|
|
impl<'d, T: Instance, M: Mode> UartTx<'d, T, M> {
|
|
fn new(tx_dma: Option<PeripheralRef<'d, AnyChannel>>) -> Self {
|
|
Self {
|
|
tx_dma,
|
|
phantom: PhantomData,
|
|
}
|
|
}
|
|
|
|
pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<(), Error> {
|
|
let r = T::regs();
|
|
unsafe {
|
|
for &b in buffer {
|
|
while r.uartfr().read().txff() {}
|
|
r.uartdr().write(|w| w.set_data(b));
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
pub fn blocking_flush(&mut self) -> Result<(), Error> {
|
|
let r = T::regs();
|
|
unsafe { while !r.uartfr().read().txfe() {} }
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance> UartTx<'d, T, Async> {
|
|
pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error> {
|
|
let ch = self.tx_dma.as_mut().unwrap();
|
|
let transfer = unsafe {
|
|
T::regs().uartdmacr().modify(|reg| {
|
|
reg.set_txdmae(true);
|
|
});
|
|
// If we don't assign future to a variable, the data register pointer
|
|
// is held across an await and makes the future non-Send.
|
|
crate::dma::write(ch, buffer, T::regs().uartdr().ptr() as *mut _, T::TX_DREQ)
|
|
};
|
|
transfer.await;
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance, M: Mode> UartRx<'d, T, M> {
|
|
fn new(rx_dma: Option<PeripheralRef<'d, AnyChannel>>) -> Self {
|
|
Self {
|
|
rx_dma,
|
|
phantom: PhantomData,
|
|
}
|
|
}
|
|
|
|
pub fn blocking_read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
|
|
let r = T::regs();
|
|
unsafe {
|
|
for b in buffer {
|
|
*b = loop {
|
|
if r.uartfr().read().rxfe() {
|
|
continue;
|
|
}
|
|
|
|
let dr = r.uartdr().read();
|
|
|
|
if dr.oe() {
|
|
return Err(Error::Overrun);
|
|
} else if dr.be() {
|
|
return Err(Error::Break);
|
|
} else if dr.pe() {
|
|
return Err(Error::Parity);
|
|
} else if dr.fe() {
|
|
return Err(Error::Framing);
|
|
} else {
|
|
break dr.data();
|
|
}
|
|
};
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance> UartRx<'d, T, Async> {
|
|
pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
|
|
let ch = self.rx_dma.as_mut().unwrap();
|
|
let transfer = unsafe {
|
|
T::regs().uartdmacr().modify(|reg| {
|
|
reg.set_rxdmae(true);
|
|
});
|
|
// If we don't assign future to a variable, the data register pointer
|
|
// is held across an await and makes the future non-Send.
|
|
crate::dma::read(ch, T::regs().uartdr().ptr() as *const _, buffer, T::RX_DREQ)
|
|
};
|
|
transfer.await;
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance> Uart<'d, T, Blocking> {
|
|
/// Create a new UART without hardware flow control
|
|
pub fn new_blocking(
|
|
uart: impl Peripheral<P = T> + 'd,
|
|
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
|
|
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
|
|
config: Config,
|
|
) -> Self {
|
|
into_ref!(tx, rx);
|
|
Self::new_inner(uart, tx.map_into(), rx.map_into(), None, None, None, None, config)
|
|
}
|
|
|
|
/// Create a new UART with hardware flow control (RTS/CTS)
|
|
pub fn new_with_rtscts_blocking(
|
|
uart: impl Peripheral<P = T> + 'd,
|
|
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
|
|
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
|
|
rts: impl Peripheral<P = impl RtsPin<T>> + 'd,
|
|
cts: impl Peripheral<P = impl CtsPin<T>> + 'd,
|
|
config: Config,
|
|
) -> Self {
|
|
into_ref!(tx, rx, cts, rts);
|
|
Self::new_inner(
|
|
uart,
|
|
tx.map_into(),
|
|
rx.map_into(),
|
|
Some(rts.map_into()),
|
|
Some(cts.map_into()),
|
|
None,
|
|
None,
|
|
config,
|
|
)
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance> Uart<'d, T, Async> {
|
|
/// Create a new DMA enabled UART without hardware flow control
|
|
pub fn new(
|
|
uart: impl Peripheral<P = T> + 'd,
|
|
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
|
|
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
|
|
tx_dma: impl Peripheral<P = impl Channel> + 'd,
|
|
rx_dma: impl Peripheral<P = impl Channel> + 'd,
|
|
config: Config,
|
|
) -> Self {
|
|
into_ref!(tx, rx, tx_dma, rx_dma);
|
|
Self::new_inner(
|
|
uart,
|
|
tx.map_into(),
|
|
rx.map_into(),
|
|
None,
|
|
None,
|
|
Some(tx_dma.map_into()),
|
|
Some(rx_dma.map_into()),
|
|
config,
|
|
)
|
|
}
|
|
|
|
/// Create a new DMA enabled UART with hardware flow control (RTS/CTS)
|
|
pub fn new_with_rtscts(
|
|
uart: impl Peripheral<P = T> + 'd,
|
|
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
|
|
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
|
|
rts: impl Peripheral<P = impl RtsPin<T>> + 'd,
|
|
cts: impl Peripheral<P = impl CtsPin<T>> + 'd,
|
|
tx_dma: impl Peripheral<P = impl Channel> + 'd,
|
|
rx_dma: impl Peripheral<P = impl Channel> + 'd,
|
|
config: Config,
|
|
) -> Self {
|
|
into_ref!(tx, rx, cts, rts, tx_dma, rx_dma);
|
|
Self::new_inner(
|
|
uart,
|
|
tx.map_into(),
|
|
rx.map_into(),
|
|
Some(rts.map_into()),
|
|
Some(cts.map_into()),
|
|
Some(tx_dma.map_into()),
|
|
Some(rx_dma.map_into()),
|
|
config,
|
|
)
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance, M: Mode> Uart<'d, T, M> {
|
|
fn new_inner(
|
|
_uart: impl Peripheral<P = T> + 'd,
|
|
mut tx: PeripheralRef<'d, AnyPin>,
|
|
mut rx: PeripheralRef<'d, AnyPin>,
|
|
mut rts: Option<PeripheralRef<'d, AnyPin>>,
|
|
mut cts: Option<PeripheralRef<'d, AnyPin>>,
|
|
tx_dma: Option<PeripheralRef<'d, AnyChannel>>,
|
|
rx_dma: Option<PeripheralRef<'d, AnyChannel>>,
|
|
config: Config,
|
|
) -> Self {
|
|
Self::init(
|
|
Some(tx.reborrow()),
|
|
Some(rx.reborrow()),
|
|
rts.as_mut().map(|x| x.reborrow()),
|
|
cts.as_mut().map(|x| x.reborrow()),
|
|
config,
|
|
);
|
|
|
|
Self {
|
|
tx: UartTx::new(tx_dma),
|
|
rx: UartRx::new(rx_dma),
|
|
}
|
|
}
|
|
|
|
fn init(
|
|
tx: Option<PeripheralRef<'_, AnyPin>>,
|
|
rx: Option<PeripheralRef<'_, AnyPin>>,
|
|
rts: Option<PeripheralRef<'_, AnyPin>>,
|
|
cts: Option<PeripheralRef<'_, AnyPin>>,
|
|
config: Config,
|
|
) {
|
|
let r = T::regs();
|
|
unsafe {
|
|
if let Some(pin) = &tx {
|
|
pin.io().ctrl().write(|w| w.set_funcsel(2));
|
|
pin.pad_ctrl().write(|w| w.set_ie(true));
|
|
}
|
|
if let Some(pin) = &rx {
|
|
pin.io().ctrl().write(|w| w.set_funcsel(2));
|
|
pin.pad_ctrl().write(|w| w.set_ie(true));
|
|
}
|
|
if let Some(pin) = &cts {
|
|
pin.io().ctrl().write(|w| w.set_funcsel(2));
|
|
pin.pad_ctrl().write(|w| w.set_ie(true));
|
|
}
|
|
if let Some(pin) = &rts {
|
|
pin.io().ctrl().write(|w| w.set_funcsel(2));
|
|
pin.pad_ctrl().write(|w| w.set_ie(true));
|
|
}
|
|
|
|
let clk_base = crate::clocks::clk_peri_freq();
|
|
|
|
let baud_rate_div = (8 * clk_base) / config.baudrate;
|
|
let mut baud_ibrd = baud_rate_div >> 7;
|
|
let mut baud_fbrd = ((baud_rate_div & 0x7f) + 1) / 2;
|
|
|
|
if baud_ibrd == 0 {
|
|
baud_ibrd = 1;
|
|
baud_fbrd = 0;
|
|
} else if baud_ibrd >= 65535 {
|
|
baud_ibrd = 65535;
|
|
baud_fbrd = 0;
|
|
}
|
|
|
|
// Load PL011's baud divisor registers
|
|
r.uartibrd().write_value(pac::uart::regs::Uartibrd(baud_ibrd));
|
|
r.uartfbrd().write_value(pac::uart::regs::Uartfbrd(baud_fbrd));
|
|
|
|
let (pen, eps) = match config.parity {
|
|
Parity::ParityNone => (false, false),
|
|
Parity::ParityOdd => (true, false),
|
|
Parity::ParityEven => (true, true),
|
|
};
|
|
|
|
// PL011 needs a (dummy) line control register write to latch in the
|
|
// divisors. We don't want to actually change LCR contents here.
|
|
r.uartlcr_h().modify(|_| {});
|
|
|
|
r.uartlcr_h().write(|w| {
|
|
w.set_wlen(config.data_bits.bits());
|
|
w.set_stp2(config.stop_bits == StopBits::STOP2);
|
|
w.set_pen(pen);
|
|
w.set_eps(eps);
|
|
w.set_fen(true);
|
|
});
|
|
|
|
r.uartifls().write(|w| {
|
|
w.set_rxiflsel(0b000);
|
|
w.set_txiflsel(0b000);
|
|
});
|
|
|
|
r.uartcr().write(|w| {
|
|
w.set_uarten(true);
|
|
w.set_rxe(true);
|
|
w.set_txe(true);
|
|
w.set_ctsen(cts.is_some());
|
|
w.set_rtsen(rts.is_some());
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance, M: Mode> Uart<'d, T, M> {
|
|
pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<(), Error> {
|
|
self.tx.blocking_write(buffer)
|
|
}
|
|
|
|
pub fn blocking_flush(&mut self) -> Result<(), Error> {
|
|
self.tx.blocking_flush()
|
|
}
|
|
|
|
pub fn blocking_read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
|
|
self.rx.blocking_read(buffer)
|
|
}
|
|
|
|
/// Split the Uart into a transmitter and receiver, which is particuarly
|
|
/// useful when having two tasks correlating to transmitting and receiving.
|
|
pub fn split(self) -> (UartTx<'d, T, M>, UartRx<'d, T, M>) {
|
|
(self.tx, self.rx)
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance> Uart<'d, T, Async> {
|
|
pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error> {
|
|
self.tx.write(buffer).await
|
|
}
|
|
|
|
pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
|
|
self.rx.read(buffer).await
|
|
}
|
|
}
|
|
|
|
mod eh02 {
|
|
use super::*;
|
|
|
|
impl<'d, T: Instance, M: Mode> embedded_hal_02::serial::Read<u8> for UartRx<'d, T, M> {
|
|
type Error = Error;
|
|
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
|
|
let r = T::regs();
|
|
unsafe {
|
|
if r.uartfr().read().rxfe() {
|
|
return Err(nb::Error::WouldBlock);
|
|
}
|
|
|
|
let dr = r.uartdr().read();
|
|
|
|
if dr.oe() {
|
|
Err(nb::Error::Other(Error::Overrun))
|
|
} else if dr.be() {
|
|
Err(nb::Error::Other(Error::Break))
|
|
} else if dr.pe() {
|
|
Err(nb::Error::Other(Error::Parity))
|
|
} else if dr.fe() {
|
|
Err(nb::Error::Other(Error::Framing))
|
|
} else {
|
|
Ok(dr.data())
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::serial::Write<u8> for UartTx<'d, T, M> {
|
|
type Error = Error;
|
|
|
|
fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
|
|
self.blocking_write(buffer)
|
|
}
|
|
|
|
fn bflush(&mut self) -> Result<(), Self::Error> {
|
|
self.blocking_flush()
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance, M: Mode> embedded_hal_02::serial::Read<u8> for Uart<'d, T, M> {
|
|
type Error = Error;
|
|
|
|
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
|
|
embedded_hal_02::serial::Read::read(&mut self.rx)
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::serial::Write<u8> for Uart<'d, T, M> {
|
|
type Error = Error;
|
|
|
|
fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
|
|
self.blocking_write(buffer)
|
|
}
|
|
|
|
fn bflush(&mut self) -> Result<(), Self::Error> {
|
|
self.blocking_flush()
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "unstable-traits")]
|
|
mod eh1 {
|
|
use super::*;
|
|
|
|
impl embedded_hal_1::serial::Error for Error {
|
|
fn kind(&self) -> embedded_hal_1::serial::ErrorKind {
|
|
match *self {
|
|
Self::Framing => embedded_hal_1::serial::ErrorKind::FrameFormat,
|
|
Self::Break => embedded_hal_1::serial::ErrorKind::Other,
|
|
Self::Overrun => embedded_hal_1::serial::ErrorKind::Overrun,
|
|
Self::Parity => embedded_hal_1::serial::ErrorKind::Parity,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance, M: Mode> embedded_hal_1::serial::ErrorType for Uart<'d, T, M> {
|
|
type Error = Error;
|
|
}
|
|
|
|
impl<'d, T: Instance, M: Mode> embedded_hal_1::serial::ErrorType for UartTx<'d, T, M> {
|
|
type Error = Error;
|
|
}
|
|
|
|
impl<'d, T: Instance, M: Mode> embedded_hal_1::serial::ErrorType for UartRx<'d, T, M> {
|
|
type Error = Error;
|
|
}
|
|
|
|
impl<'d, T: Instance, M: Mode> embedded_hal_nb::serial::Read for UartRx<'d, T, M> {
|
|
fn read(&mut self) -> nb::Result<u8, Self::Error> {
|
|
let r = T::regs();
|
|
unsafe {
|
|
let dr = r.uartdr().read();
|
|
|
|
if dr.oe() {
|
|
Err(nb::Error::Other(Error::Overrun))
|
|
} else if dr.be() {
|
|
Err(nb::Error::Other(Error::Break))
|
|
} else if dr.pe() {
|
|
Err(nb::Error::Other(Error::Parity))
|
|
} else if dr.fe() {
|
|
Err(nb::Error::Other(Error::Framing))
|
|
} else if dr.fe() {
|
|
Ok(dr.data())
|
|
} else {
|
|
Err(nb::Error::WouldBlock)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance, M: Mode> embedded_hal_1::serial::Write for UartTx<'d, T, M> {
|
|
fn write(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
|
|
self.blocking_write(buffer)
|
|
}
|
|
|
|
fn flush(&mut self) -> Result<(), Self::Error> {
|
|
self.blocking_flush()
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance, M: Mode> embedded_hal_nb::serial::Write for UartTx<'d, T, M> {
|
|
fn write(&mut self, char: u8) -> nb::Result<(), Self::Error> {
|
|
self.blocking_write(&[char]).map_err(nb::Error::Other)
|
|
}
|
|
|
|
fn flush(&mut self) -> nb::Result<(), Self::Error> {
|
|
self.blocking_flush().map_err(nb::Error::Other)
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance, M: Mode> embedded_hal_nb::serial::Read for Uart<'d, T, M> {
|
|
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
|
|
embedded_hal_02::serial::Read::read(&mut self.rx)
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance, M: Mode> embedded_hal_1::serial::Write for Uart<'d, T, M> {
|
|
fn write(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
|
|
self.blocking_write(buffer)
|
|
}
|
|
|
|
fn flush(&mut self) -> Result<(), Self::Error> {
|
|
self.blocking_flush()
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance, M: Mode> embedded_hal_nb::serial::Write for Uart<'d, T, M> {
|
|
fn write(&mut self, char: u8) -> nb::Result<(), Self::Error> {
|
|
self.blocking_write(&[char]).map_err(nb::Error::Other)
|
|
}
|
|
|
|
fn flush(&mut self) -> nb::Result<(), Self::Error> {
|
|
self.blocking_flush().map_err(nb::Error::Other)
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(all(
|
|
feature = "unstable-traits",
|
|
feature = "nightly",
|
|
feature = "_todo_embedded_hal_serial"
|
|
))]
|
|
mod eha {
|
|
use core::future::Future;
|
|
|
|
use super::*;
|
|
|
|
impl<'d, T: Instance, M: Mode> embedded_hal_async::serial::Write for UartTx<'d, T, M> {
|
|
type WriteFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
|
|
|
|
fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a> {
|
|
self.write(buf)
|
|
}
|
|
|
|
type FlushFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
|
|
|
|
fn flush<'a>(&'a mut self) -> Self::FlushFuture<'a> {
|
|
async move { Ok(()) }
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance, M: Mode> embedded_hal_async::serial::Read for UartRx<'d, T, M> {
|
|
type ReadFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
|
|
|
|
fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a> {
|
|
self.read(buf)
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance, M: Mode> embedded_hal_async::serial::Write for Uart<'d, T, M> {
|
|
type WriteFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
|
|
|
|
fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a> {
|
|
self.write(buf)
|
|
}
|
|
|
|
type FlushFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
|
|
|
|
fn flush<'a>(&'a mut self) -> Self::FlushFuture<'a> {
|
|
async move { Ok(()) }
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance, M: Mode> embedded_hal_async::serial::Read for Uart<'d, T, M> {
|
|
type ReadFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
|
|
|
|
fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a> {
|
|
self.read(buf)
|
|
}
|
|
}
|
|
}
|
|
|
|
mod sealed {
|
|
use super::*;
|
|
|
|
pub trait Mode {}
|
|
|
|
pub trait Instance {
|
|
const TX_DREQ: u8;
|
|
const RX_DREQ: u8;
|
|
|
|
type Interrupt: crate::interrupt::Interrupt;
|
|
|
|
fn regs() -> pac::uart::Uart;
|
|
|
|
#[cfg(feature = "nightly")]
|
|
fn state() -> &'static buffered::State;
|
|
}
|
|
pub trait TxPin<T: Instance> {}
|
|
pub trait RxPin<T: Instance> {}
|
|
pub trait CtsPin<T: Instance> {}
|
|
pub trait RtsPin<T: Instance> {}
|
|
}
|
|
|
|
pub trait Mode: sealed::Mode {}
|
|
|
|
macro_rules! impl_mode {
|
|
($name:ident) => {
|
|
impl sealed::Mode for $name {}
|
|
impl Mode for $name {}
|
|
};
|
|
}
|
|
|
|
pub struct Blocking;
|
|
pub struct Async;
|
|
|
|
impl_mode!(Blocking);
|
|
impl_mode!(Async);
|
|
|
|
pub trait Instance: sealed::Instance {}
|
|
|
|
macro_rules! impl_instance {
|
|
($inst:ident, $irq:ident, $tx_dreq:expr, $rx_dreq:expr) => {
|
|
impl sealed::Instance for peripherals::$inst {
|
|
const TX_DREQ: u8 = $tx_dreq;
|
|
const RX_DREQ: u8 = $rx_dreq;
|
|
|
|
type Interrupt = crate::interrupt::$irq;
|
|
|
|
fn regs() -> pac::uart::Uart {
|
|
pac::$inst
|
|
}
|
|
|
|
#[cfg(feature = "nightly")]
|
|
fn state() -> &'static buffered::State {
|
|
static STATE: buffered::State = buffered::State::new();
|
|
&STATE
|
|
}
|
|
}
|
|
impl Instance for peripherals::$inst {}
|
|
};
|
|
}
|
|
|
|
impl_instance!(UART0, UART0_IRQ, 20, 21);
|
|
impl_instance!(UART1, UART1_IRQ, 22, 23);
|
|
|
|
pub trait TxPin<T: Instance>: sealed::TxPin<T> + crate::gpio::Pin {}
|
|
pub trait RxPin<T: Instance>: sealed::RxPin<T> + crate::gpio::Pin {}
|
|
pub trait CtsPin<T: Instance>: sealed::CtsPin<T> + crate::gpio::Pin {}
|
|
pub trait RtsPin<T: Instance>: sealed::RtsPin<T> + crate::gpio::Pin {}
|
|
|
|
macro_rules! impl_pin {
|
|
($pin:ident, $instance:ident, $function:ident) => {
|
|
impl sealed::$function<peripherals::$instance> for peripherals::$pin {}
|
|
impl $function<peripherals::$instance> for peripherals::$pin {}
|
|
};
|
|
}
|
|
|
|
impl_pin!(PIN_0, UART0, TxPin);
|
|
impl_pin!(PIN_1, UART0, RxPin);
|
|
impl_pin!(PIN_2, UART0, CtsPin);
|
|
impl_pin!(PIN_3, UART0, RtsPin);
|
|
impl_pin!(PIN_4, UART1, TxPin);
|
|
impl_pin!(PIN_5, UART1, RxPin);
|
|
impl_pin!(PIN_6, UART1, CtsPin);
|
|
impl_pin!(PIN_7, UART1, RtsPin);
|
|
impl_pin!(PIN_8, UART1, TxPin);
|
|
impl_pin!(PIN_9, UART1, RxPin);
|
|
impl_pin!(PIN_10, UART1, CtsPin);
|
|
impl_pin!(PIN_11, UART1, RtsPin);
|
|
impl_pin!(PIN_12, UART0, TxPin);
|
|
impl_pin!(PIN_13, UART0, RxPin);
|
|
impl_pin!(PIN_14, UART0, CtsPin);
|
|
impl_pin!(PIN_15, UART0, RtsPin);
|
|
impl_pin!(PIN_16, UART0, TxPin);
|
|
impl_pin!(PIN_17, UART0, RxPin);
|
|
impl_pin!(PIN_18, UART0, CtsPin);
|
|
impl_pin!(PIN_19, UART0, RtsPin);
|
|
impl_pin!(PIN_20, UART1, TxPin);
|
|
impl_pin!(PIN_21, UART1, RxPin);
|
|
impl_pin!(PIN_22, UART1, CtsPin);
|
|
impl_pin!(PIN_23, UART1, RtsPin);
|
|
impl_pin!(PIN_24, UART1, TxPin);
|
|
impl_pin!(PIN_25, UART1, RxPin);
|
|
impl_pin!(PIN_26, UART1, CtsPin);
|
|
impl_pin!(PIN_27, UART1, RtsPin);
|
|
impl_pin!(PIN_28, UART0, TxPin);
|
|
impl_pin!(PIN_29, UART0, RxPin);
|