2023-06-01 03:25:19 +02:00

700 lines
20 KiB
Rust

use core::future::poll_fn;
use core::slice;
use core::task::Poll;
use embassy_cortex_m::interrupt::Interrupt;
use embassy_hal_common::atomic_ring_buffer::RingBuffer;
use embassy_sync::waitqueue::AtomicWaker;
use super::*;
/// Interrupt handler.
pub struct InterruptHandler<T: BasicInstance> {
_phantom: PhantomData<T>,
}
impl<T: BasicInstance> interrupt::Handler<T::Interrupt> for InterruptHandler<T> {
unsafe fn on_interrupt() {
let r = T::regs();
let state = T::buffered_state();
// RX
unsafe {
let sr = sr(r).read();
clear_interrupt_flags(r, sr);
if sr.rxne() {
if sr.pe() {
warn!("Parity error");
}
if sr.fe() {
warn!("Framing error");
}
if sr.ne() {
warn!("Noise error");
}
if sr.ore() {
warn!("Overrun error");
}
let mut rx_writer = state.rx_buf.writer();
let buf = rx_writer.push_slice();
if !buf.is_empty() {
// This read also clears the error and idle interrupt flags on v1.
buf[0] = rdr(r).read_volatile();
rx_writer.push_done(1);
} else {
// FIXME: Should we disable any further RX interrupts when the buffer becomes full.
}
if state.rx_buf.is_full() {
state.rx_waker.wake();
}
}
if sr.idle() {
state.rx_waker.wake();
};
}
// TX
unsafe {
if sr(r).read().txe() {
let mut tx_reader = state.tx_buf.reader();
let buf = tx_reader.pop_slice();
if !buf.is_empty() {
r.cr1().modify(|w| {
w.set_txeie(true);
});
tdr(r).write_volatile(buf[0].into());
tx_reader.pop_done(1);
state.tx_waker.wake();
} else {
// Disable interrupt until we have something to transmit again
r.cr1().modify(|w| {
w.set_txeie(false);
});
}
}
}
}
}
pub struct State {
rx_waker: AtomicWaker,
rx_buf: RingBuffer,
tx_waker: AtomicWaker,
tx_buf: RingBuffer,
}
impl State {
pub const fn new() -> Self {
Self {
rx_buf: RingBuffer::new(),
tx_buf: RingBuffer::new(),
rx_waker: AtomicWaker::new(),
tx_waker: AtomicWaker::new(),
}
}
}
pub struct BufferedUart<'d, T: BasicInstance> {
rx: BufferedUartRx<'d, T>,
tx: BufferedUartTx<'d, T>,
}
pub struct BufferedUartTx<'d, T: BasicInstance> {
phantom: PhantomData<&'d mut T>,
}
pub struct BufferedUartRx<'d, T: BasicInstance> {
phantom: PhantomData<&'d mut T>,
}
impl<'d, T: BasicInstance> BufferedUart<'d, T> {
pub fn new(
peri: impl Peripheral<P = T> + 'd,
_irq: impl interrupt::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
tx_buffer: &'d mut [u8],
rx_buffer: &'d mut [u8],
config: Config,
) -> BufferedUart<'d, T> {
T::enable();
T::reset();
Self::new_inner(peri, rx, tx, tx_buffer, rx_buffer, config)
}
pub fn new_with_rtscts(
peri: impl Peripheral<P = T> + 'd,
_irq: impl interrupt::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
rts: impl Peripheral<P = impl RtsPin<T>> + 'd,
cts: impl Peripheral<P = impl CtsPin<T>> + 'd,
tx_buffer: &'d mut [u8],
rx_buffer: &'d mut [u8],
config: Config,
) -> BufferedUart<'d, T> {
into_ref!(cts, rts);
T::enable();
T::reset();
unsafe {
rts.set_as_af(rts.af_num(), AFType::OutputPushPull);
cts.set_as_af(cts.af_num(), AFType::Input);
T::regs().cr3().write(|w| {
w.set_rtse(true);
w.set_ctse(true);
});
}
Self::new_inner(peri, rx, tx, tx_buffer, rx_buffer, config)
}
#[cfg(not(any(usart_v1, usart_v2)))]
pub fn new_with_de(
peri: impl Peripheral<P = T> + 'd,
_irq: impl interrupt::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
de: impl Peripheral<P = impl DePin<T>> + 'd,
tx_buffer: &'d mut [u8],
rx_buffer: &'d mut [u8],
config: Config,
) -> BufferedUart<'d, T> {
into_ref!(de);
T::enable();
T::reset();
unsafe {
de.set_as_af(de.af_num(), AFType::OutputPushPull);
T::regs().cr3().write(|w| {
w.set_dem(true);
});
}
Self::new_inner(peri, rx, tx, tx_buffer, rx_buffer, config)
}
fn new_inner(
_peri: impl Peripheral<P = T> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
tx_buffer: &'d mut [u8],
rx_buffer: &'d mut [u8],
config: Config,
) -> BufferedUart<'d, T> {
into_ref!(_peri, rx, tx);
let state = T::buffered_state();
let len = tx_buffer.len();
unsafe { state.tx_buf.init(tx_buffer.as_mut_ptr(), len) };
let len = rx_buffer.len();
unsafe { state.rx_buf.init(rx_buffer.as_mut_ptr(), len) };
let r = T::regs();
unsafe {
rx.set_as_af(rx.af_num(), AFType::Input);
tx.set_as_af(tx.af_num(), AFType::OutputPushPull);
}
configure(r, &config, T::frequency(), T::KIND, true, true);
unsafe {
r.cr1().modify(|w| {
#[cfg(lpuart_v2)]
w.set_fifoen(true);
w.set_rxneie(true);
w.set_idleie(true);
});
}
T::Interrupt::unpend();
unsafe { T::Interrupt::enable() };
Self {
rx: BufferedUartRx { phantom: PhantomData },
tx: BufferedUartTx { phantom: PhantomData },
}
}
pub fn split(self) -> (BufferedUartTx<'d, T>, BufferedUartRx<'d, T>) {
(self.tx, self.rx)
}
}
impl<'d, T: BasicInstance> BufferedUartRx<'d, T> {
async fn read(&self, buf: &mut [u8]) -> Result<usize, Error> {
poll_fn(move |cx| {
let state = T::buffered_state();
let mut rx_reader = unsafe { state.rx_buf.reader() };
let data = rx_reader.pop_slice();
if !data.is_empty() {
let len = data.len().min(buf.len());
buf[..len].copy_from_slice(&data[..len]);
let do_pend = state.rx_buf.is_full();
rx_reader.pop_done(len);
if do_pend {
T::Interrupt::pend();
}
return Poll::Ready(Ok(len));
}
state.rx_waker.register(cx.waker());
Poll::Pending
})
.await
}
fn blocking_read(&self, buf: &mut [u8]) -> Result<usize, Error> {
loop {
let state = T::buffered_state();
let mut rx_reader = unsafe { state.rx_buf.reader() };
let data = rx_reader.pop_slice();
if !data.is_empty() {
let len = data.len().min(buf.len());
buf[..len].copy_from_slice(&data[..len]);
let do_pend = state.rx_buf.is_full();
rx_reader.pop_done(len);
if do_pend {
T::Interrupt::pend();
}
return Ok(len);
}
}
}
async fn fill_buf(&self) -> Result<&[u8], Error> {
poll_fn(move |cx| {
let state = T::buffered_state();
let mut rx_reader = unsafe { state.rx_buf.reader() };
let (p, n) = rx_reader.pop_buf();
if n == 0 {
state.rx_waker.register(cx.waker());
return Poll::Pending;
}
let buf = unsafe { slice::from_raw_parts(p, n) };
Poll::Ready(Ok(buf))
})
.await
}
fn consume(&self, amt: usize) {
let state = T::buffered_state();
let mut rx_reader = unsafe { state.rx_buf.reader() };
let full = state.rx_buf.is_full();
rx_reader.pop_done(amt);
if full {
T::Interrupt::pend();
}
}
}
impl<'d, T: BasicInstance> BufferedUartTx<'d, T> {
async fn write(&self, buf: &[u8]) -> Result<usize, Error> {
poll_fn(move |cx| {
let state = T::buffered_state();
let empty = state.tx_buf.is_empty();
let mut tx_writer = unsafe { state.tx_buf.writer() };
let data = tx_writer.push_slice();
if data.is_empty() {
state.tx_waker.register(cx.waker());
return Poll::Pending;
}
let n = data.len().min(buf.len());
data[..n].copy_from_slice(&buf[..n]);
tx_writer.push_done(n);
if empty {
T::Interrupt::pend();
}
Poll::Ready(Ok(n))
})
.await
}
async fn flush(&self) -> Result<(), Error> {
poll_fn(move |cx| {
let state = T::buffered_state();
if !state.tx_buf.is_empty() {
state.tx_waker.register(cx.waker());
return Poll::Pending;
}
Poll::Ready(Ok(()))
})
.await
}
fn blocking_write(&self, buf: &[u8]) -> Result<usize, Error> {
loop {
let state = T::buffered_state();
let empty = state.tx_buf.is_empty();
let mut tx_writer = unsafe { state.tx_buf.writer() };
let data = tx_writer.push_slice();
if !data.is_empty() {
let n = data.len().min(buf.len());
data[..n].copy_from_slice(&buf[..n]);
tx_writer.push_done(n);
if empty {
T::Interrupt::pend();
}
return Ok(n);
}
}
}
fn blocking_flush(&self) -> Result<(), Error> {
loop {
let state = T::buffered_state();
if state.tx_buf.is_empty() {
return Ok(());
}
}
}
}
impl<'d, T: BasicInstance> Drop for BufferedUartRx<'d, T> {
fn drop(&mut self) {
let state = T::buffered_state();
unsafe {
state.rx_buf.deinit();
// TX is inactive if the the buffer is not available.
// We can now unregister the interrupt handler
if state.tx_buf.len() == 0 {
T::Interrupt::disable();
}
}
}
}
impl<'d, T: BasicInstance> Drop for BufferedUartTx<'d, T> {
fn drop(&mut self) {
let state = T::buffered_state();
unsafe {
state.tx_buf.deinit();
// RX is inactive if the the buffer is not available.
// We can now unregister the interrupt handler
if state.rx_buf.len() == 0 {
T::Interrupt::disable();
}
}
}
}
impl embedded_io::Error for Error {
fn kind(&self) -> embedded_io::ErrorKind {
embedded_io::ErrorKind::Other
}
}
impl<'d, T: BasicInstance> embedded_io::Io for BufferedUart<'d, T> {
type Error = Error;
}
impl<'d, T: BasicInstance> embedded_io::Io for BufferedUartRx<'d, T> {
type Error = Error;
}
impl<'d, T: BasicInstance> embedded_io::Io for BufferedUartTx<'d, T> {
type Error = Error;
}
impl<'d, T: BasicInstance> embedded_io::asynch::Read for BufferedUart<'d, T> {
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
self.rx.read(buf).await
}
}
impl<'d, T: BasicInstance> embedded_io::asynch::Read for BufferedUartRx<'d, T> {
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
Self::read(self, buf).await
}
}
impl<'d, T: BasicInstance> embedded_io::asynch::BufRead for BufferedUart<'d, T> {
async fn fill_buf(&mut self) -> Result<&[u8], Self::Error> {
self.rx.fill_buf().await
}
fn consume(&mut self, amt: usize) {
self.rx.consume(amt)
}
}
impl<'d, T: BasicInstance> embedded_io::asynch::BufRead for BufferedUartRx<'d, T> {
async fn fill_buf(&mut self) -> Result<&[u8], Self::Error> {
Self::fill_buf(self).await
}
fn consume(&mut self, amt: usize) {
Self::consume(self, amt)
}
}
impl<'d, T: BasicInstance> embedded_io::asynch::Write for BufferedUart<'d, T> {
async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
self.tx.write(buf).await
}
async fn flush(&mut self) -> Result<(), Self::Error> {
self.tx.flush().await
}
}
impl<'d, T: BasicInstance> embedded_io::asynch::Write for BufferedUartTx<'d, T> {
async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
Self::write(self, buf).await
}
async fn flush(&mut self) -> Result<(), Self::Error> {
Self::flush(self).await
}
}
impl<'d, T: BasicInstance> embedded_io::blocking::Read for BufferedUart<'d, T> {
fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
self.rx.blocking_read(buf)
}
}
impl<'d, T: BasicInstance> embedded_io::blocking::Read for BufferedUartRx<'d, T> {
fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
self.blocking_read(buf)
}
}
impl<'d, T: BasicInstance> embedded_io::blocking::Write for BufferedUart<'d, T> {
fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
self.tx.blocking_write(buf)
}
fn flush(&mut self) -> Result<(), Self::Error> {
self.tx.blocking_flush()
}
}
impl<'d, T: BasicInstance> embedded_io::blocking::Write for BufferedUartTx<'d, T> {
fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
Self::blocking_write(self, buf)
}
fn flush(&mut self) -> Result<(), Self::Error> {
Self::blocking_flush(self)
}
}
mod eh02 {
use super::*;
impl<'d, T: BasicInstance> embedded_hal_02::serial::Read<u8> for BufferedUartRx<'d, T> {
type Error = Error;
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
let r = T::regs();
unsafe {
let sr = sr(r).read();
if sr.pe() {
rdr(r).read_volatile();
Err(nb::Error::Other(Error::Parity))
} else if sr.fe() {
rdr(r).read_volatile();
Err(nb::Error::Other(Error::Framing))
} else if sr.ne() {
rdr(r).read_volatile();
Err(nb::Error::Other(Error::Noise))
} else if sr.ore() {
rdr(r).read_volatile();
Err(nb::Error::Other(Error::Overrun))
} else if sr.rxne() {
Ok(rdr(r).read_volatile())
} else {
Err(nb::Error::WouldBlock)
}
}
}
}
impl<'d, T: BasicInstance> embedded_hal_02::blocking::serial::Write<u8> for BufferedUartTx<'d, T> {
type Error = Error;
fn bwrite_all(&mut self, mut buffer: &[u8]) -> Result<(), Self::Error> {
while !buffer.is_empty() {
match self.blocking_write(buffer) {
Ok(0) => panic!("zero-length write."),
Ok(n) => buffer = &buffer[n..],
Err(e) => return Err(e),
}
}
Ok(())
}
fn bflush(&mut self) -> Result<(), Self::Error> {
self.blocking_flush()
}
}
impl<'d, T: BasicInstance> embedded_hal_02::serial::Read<u8> for BufferedUart<'d, T> {
type Error = Error;
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
embedded_hal_02::serial::Read::read(&mut self.rx)
}
}
impl<'d, T: BasicInstance> embedded_hal_02::blocking::serial::Write<u8> for BufferedUart<'d, T> {
type Error = Error;
fn bwrite_all(&mut self, mut buffer: &[u8]) -> Result<(), Self::Error> {
while !buffer.is_empty() {
match self.tx.blocking_write(buffer) {
Ok(0) => panic!("zero-length write."),
Ok(n) => buffer = &buffer[n..],
Err(e) => return Err(e),
}
}
Ok(())
}
fn bflush(&mut self) -> Result<(), Self::Error> {
self.tx.blocking_flush()
}
}
}
#[cfg(feature = "unstable-traits")]
mod eh1 {
use super::*;
impl<'d, T: BasicInstance> embedded_hal_1::serial::ErrorType for BufferedUart<'d, T> {
type Error = Error;
}
impl<'d, T: BasicInstance> embedded_hal_1::serial::ErrorType for BufferedUartTx<'d, T> {
type Error = Error;
}
impl<'d, T: BasicInstance> embedded_hal_1::serial::ErrorType for BufferedUartRx<'d, T> {
type Error = Error;
}
impl<'d, T: BasicInstance> embedded_hal_nb::serial::Read for BufferedUartRx<'d, T> {
fn read(&mut self) -> nb::Result<u8, Self::Error> {
embedded_hal_02::serial::Read::read(self)
}
}
impl<'d, T: BasicInstance> embedded_hal_1::serial::Write for BufferedUartTx<'d, T> {
fn write(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(buffer).map(drop)
}
fn flush(&mut self) -> Result<(), Self::Error> {
self.blocking_flush()
}
}
impl<'d, T: BasicInstance> embedded_hal_nb::serial::Write for BufferedUartTx<'d, T> {
fn write(&mut self, char: u8) -> nb::Result<(), Self::Error> {
self.blocking_write(&[char]).map(drop).map_err(nb::Error::Other)
}
fn flush(&mut self) -> nb::Result<(), Self::Error> {
self.blocking_flush().map_err(nb::Error::Other)
}
}
impl<'d, T: BasicInstance> embedded_hal_nb::serial::Read for BufferedUart<'d, T> {
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
embedded_hal_02::serial::Read::read(&mut self.rx)
}
}
impl<'d, T: BasicInstance> embedded_hal_1::serial::Write for BufferedUart<'d, T> {
fn write(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
self.tx.blocking_write(buffer).map(drop)
}
fn flush(&mut self) -> Result<(), Self::Error> {
self.tx.blocking_flush()
}
}
impl<'d, T: BasicInstance> embedded_hal_nb::serial::Write for BufferedUart<'d, T> {
fn write(&mut self, char: u8) -> nb::Result<(), Self::Error> {
self.tx.blocking_write(&[char]).map(drop).map_err(nb::Error::Other)
}
fn flush(&mut self) -> nb::Result<(), Self::Error> {
self.tx.blocking_flush().map_err(nb::Error::Other)
}
}
}
#[cfg(all(
feature = "unstable-traits",
feature = "nightly",
feature = "_todo_embedded_hal_serial"
))]
mod eha {
use core::future::Future;
use super::*;
impl<'d, T: BasicInstance> embedded_hal_async::serial::Write for BufferedUartTx<'d, T> {
async fn write(&mut self, buf: &[u8]) -> Result<(), Self::Error> {
Self::write(buf)
}
async fn flush(&mut self) -> Result<(), Self::Error> {
Self::flush()
}
}
impl<'d, T: BasicInstance> embedded_hal_async::serial::Read for BufferedUartRx<'d, T> {
async fn read(&mut self, buf: &mut [u8]) -> Result<(), Self::Error> {
Self::read(buf)
}
}
impl<'d, T: BasicInstance> embedded_hal_async::serial::Write for BufferedUart<'d, T> {
async fn write(&mut self, buf: &[u8]) -> Result<(), Self::Error> {
self.tx.write(buf)
}
async fn flush(&mut self) -> Result<(), Self::Error> {
self.tx.flush()
}
}
impl<'d, T: BasicInstance> embedded_hal_async::serial::Read for BufferedUart<'d, T> {
async fn read(&mut self, buf: &mut [u8]) -> Result<(), Self::Error> {
self.rx.read(buf)
}
}
}