embassy/embassy-stm32/src/dma/ringbuffer.rs
2023-05-01 22:42:36 +02:00

434 lines
15 KiB
Rust

use core::ops::Range;
use core::sync::atomic::{compiler_fence, Ordering};
use super::word::Word;
/// A "read-only" ring-buffer to be used together with the DMA controller which
/// writes in a circular way, "uncontrolled" to the buffer.
///
/// A snapshot of the ring buffer state can be attained by setting the `ndtr` field
/// to the current register value. `ndtr` describes the current position of the DMA
/// write.
///
/// # Safety
///
/// The ring buffer controls the TCIF (transfer completed interrupt flag) to
/// detect buffer overruns, hence this interrupt must be disabled.
/// The buffer can detect overruns up to one period, that is, for a X byte buffer,
/// overruns can be detected if they happen from byte X+1 up to 2X. After this
/// point, overrunds may or may not be detected.
///
/// # Buffer layout
///
/// ```text
/// Without wraparound: With wraparound:
///
/// + buf +--- NDTR ---+ + buf +---------- NDTR ----------+
/// | | | | | |
/// v v v v v v
/// +-----------------------------------------+ +-----------------------------------------+
/// |oooooooooooXXXXXXXXXXXXXXXXoooooooooooooo| |XXXXXXXXXXXXXooooooooooooXXXXXXXXXXXXXXXX|
/// +-----------------------------------------+ +-----------------------------------------+
/// ^ ^ ^ ^ ^ ^
/// | | | | | |
/// +- first --+ | +- end ------+ |
/// | | | |
/// +- end --------------------+ +- first ----------------+
/// ```
pub struct DmaRingBuffer<'a, W: Word> {
pub(crate) dma_buf: &'a mut [W],
first: usize,
pub ndtr: usize,
expect_next_read_to_wrap: bool,
}
#[derive(Debug, PartialEq)]
pub struct OverrunError;
pub trait DmaCtrl {
/// Get the NDTR register value, i.e. the space left in the underlying
/// buffer until the dma writer wraps.
fn ndtr(&self) -> usize;
/// Read the transfer completed interrupt flag
/// This flag is set by the dma controller when NDTR is reloaded,
/// i.e. when the writing wraps.
fn tcif(&self) -> bool;
/// Clear the transfer completed interrupt flag
fn clear_tcif(&mut self);
}
impl<'a, W: Word> DmaRingBuffer<'a, W> {
pub fn new(dma_buf: &'a mut [W]) -> Self {
let ndtr = dma_buf.len();
Self {
dma_buf,
first: 0,
ndtr,
expect_next_read_to_wrap: false,
}
}
/// Reset the ring buffer to its initial state
pub fn clear(&mut self) {
self.first = 0;
self.ndtr = self.dma_buf.len();
self.expect_next_read_to_wrap = false;
}
/// The buffer end position
fn end(&self) -> usize {
self.dma_buf.len() - self.ndtr
}
/// Returns whether the buffer is empty
#[allow(dead_code)]
pub fn is_empty(&self) -> bool {
self.first == self.end()
}
/// The current number of bytes in the buffer
/// This may change at any time if dma is currently active
#[allow(dead_code)]
pub fn len(&self) -> usize {
// Read out a stable end (the dma periheral can change it at anytime)
let end = self.end();
if self.first <= end {
// No wrap
end - self.first
} else {
self.dma_buf.len() - self.first + end
}
}
/// Read bytes from the ring buffer
/// OverrunError is returned if the portion to be read was overwritten by the DMA controller.
pub fn read(&mut self, dma: &mut impl DmaCtrl, buf: &mut [W]) -> Result<usize, OverrunError> {
let end = self.end();
compiler_fence(Ordering::SeqCst);
if self.first == end {
// The buffer is currently empty
if dma.tcif() {
// The dma controller has written such that the ring buffer now wraps
// This is the special case where exactly n*dma_buf.len(), n = 1,2,..., bytes was written,
// but where additional bytes are now written causing the ring buffer to wrap.
// This is only an error if the writing has passed the current unread region.
self.ndtr = dma.ndtr();
if self.end() > self.first {
dma.clear_tcif();
return Err(OverrunError);
}
}
self.expect_next_read_to_wrap = false;
Ok(0)
} else if self.first < end {
// The available, unread portion in the ring buffer DOES NOT wrap
if self.expect_next_read_to_wrap {
// The read was expected to wrap but it did not
dma.clear_tcif();
return Err(OverrunError);
}
// Copy out the bytes from the dma buffer
let len = self.copy_to(buf, self.first..end);
compiler_fence(Ordering::SeqCst);
if dma.tcif() {
// The dma controller has written such that the ring buffer now wraps
self.ndtr = dma.ndtr();
if self.end() > self.first {
// The bytes that we have copied out have overflowed
// as the writer has now both wrapped and is currently writing
// within the region that we have just copied out
// Clear transfer completed interrupt flag
dma.clear_tcif();
return Err(OverrunError);
}
}
self.first = (self.first + len) % self.dma_buf.len();
self.expect_next_read_to_wrap = false;
Ok(len)
} else {
// The available, unread portion in the ring buffer DOES wrap
// The dma controller has wrapped since we last read and is currently
// writing (or the next byte added will be) in the beginning of the ring buffer.
// If the unread portion wraps then the writer must also have wrapped,
// or it has wrapped and we already cleared the TCIF flag
assert!(dma.tcif() || self.expect_next_read_to_wrap);
// Clear transfer completed interrupt flag
dma.clear_tcif();
if self.first + buf.len() < self.dma_buf.len() {
// The provided read buffer is not large enough to include all bytes from the tail of the dma buffer.
// Copy out from the dma buffer
let len = self.copy_to(buf, self.first..self.dma_buf.len());
compiler_fence(Ordering::SeqCst);
// We have now copied out the data from dma_buf
// Make sure that the just read part was not overwritten during the copy
self.ndtr = dma.ndtr();
if self.end() > self.first || dma.tcif() {
// The writer has entered the data that we have just read since we read out `end` in the beginning and until now.
return Err(OverrunError);
}
self.first = (self.first + len) % self.dma_buf.len();
self.expect_next_read_to_wrap = true;
Ok(len)
} else {
// The provided read buffer is large enough to include all bytes from the tail of the dma buffer,
// so the next read will not have any unread tail bytes in the ring buffer.
// Copy out from the dma buffer
let tail = self.copy_to(buf, self.first..self.dma_buf.len());
let head = self.copy_to(&mut buf[tail..], 0..end);
compiler_fence(Ordering::SeqCst);
// We have now copied out the data from dma_buf
// Make sure that the just read part was not overwritten during the copy
self.ndtr = dma.ndtr();
if self.end() > self.first || dma.tcif() {
return Err(OverrunError);
}
self.first = head;
self.expect_next_read_to_wrap = false;
Ok(tail + head)
}
}
}
/// Copy from the dma buffer at `data_range` into `buf`
fn copy_to(&mut self, buf: &mut [W], data_range: Range<usize>) -> usize {
// Limit the number of bytes that can be copied
let length = usize::min(data_range.len(), buf.len());
// Copy from dma buffer into read buffer
// We need to do it like this instead of a simple copy_from_slice() because
// reading from a part of memory that may be simultaneously written to is unsafe
unsafe {
let dma_buf = self.dma_buf.as_ptr();
for i in 0..length {
buf[i] = core::ptr::read_volatile(dma_buf.offset((data_range.start + i) as isize));
}
}
length
}
}
#[cfg(test)]
mod tests {
use core::array;
use core::cell::RefCell;
use super::*;
struct TestCtrl {
next_ndtr: RefCell<Option<usize>>,
tcif: bool,
}
impl TestCtrl {
pub const fn new() -> Self {
Self {
next_ndtr: RefCell::new(None),
tcif: false,
}
}
pub fn set_next_ndtr(&mut self, ndtr: usize) {
self.next_ndtr.borrow_mut().replace(ndtr);
}
}
impl DmaCtrl for TestCtrl {
fn ndtr(&self) -> usize {
self.next_ndtr.borrow_mut().unwrap()
}
fn tcif(&self) -> bool {
self.tcif
}
fn clear_tcif(&mut self) {
self.tcif = false;
}
}
#[test]
fn empty() {
let mut dma_buf = [0u8; 16];
let ringbuf = DmaRingBuffer::new(&mut dma_buf);
assert!(ringbuf.is_empty());
assert_eq!(0, ringbuf.len());
}
#[test]
fn can_read() {
let mut dma_buf: [u8; 16] = array::from_fn(|idx| idx as u8); // 0, 1, ..., 15
let mut ctrl = TestCtrl::new();
let mut ringbuf = DmaRingBuffer::new(&mut dma_buf);
ringbuf.ndtr = 6;
assert!(!ringbuf.is_empty());
assert_eq!(10, ringbuf.len());
let mut buf = [0; 2];
assert_eq!(2, ringbuf.read(&mut ctrl, &mut buf).unwrap());
assert_eq!([0, 1], buf);
assert_eq!(8, ringbuf.len());
let mut buf = [0; 2];
assert_eq!(2, ringbuf.read(&mut ctrl, &mut buf).unwrap());
assert_eq!([2, 3], buf);
assert_eq!(6, ringbuf.len());
let mut buf = [0; 8];
assert_eq!(6, ringbuf.read(&mut ctrl, &mut buf).unwrap());
assert_eq!([4, 5, 6, 7, 8, 9], buf[..6]);
assert_eq!(0, ringbuf.len());
let mut buf = [0; 2];
assert_eq!(0, ringbuf.read(&mut ctrl, &mut buf).unwrap());
}
#[test]
fn can_read_with_wrap() {
let mut dma_buf: [u8; 16] = array::from_fn(|idx| idx as u8); // 0, 1, ..., 15
let mut ctrl = TestCtrl::new();
let mut ringbuf = DmaRingBuffer::new(&mut dma_buf);
ringbuf.first = 12;
ringbuf.ndtr = 10;
// The dma controller has written 4 + 6 bytes and has reloaded NDTR
ctrl.tcif = true;
ctrl.set_next_ndtr(10);
assert!(!ringbuf.is_empty());
assert_eq!(6 + 4, ringbuf.len());
let mut buf = [0; 2];
assert_eq!(2, ringbuf.read(&mut ctrl, &mut buf).unwrap());
assert_eq!([12, 13], buf);
assert_eq!(6 + 2, ringbuf.len());
let mut buf = [0; 4];
assert_eq!(4, ringbuf.read(&mut ctrl, &mut buf).unwrap());
assert_eq!([14, 15, 0, 1], buf);
assert_eq!(4, ringbuf.len());
}
#[test]
fn can_read_when_dma_writer_is_wrapped_and_read_does_not_wrap() {
let mut dma_buf: [u8; 16] = array::from_fn(|idx| idx as u8); // 0, 1, ..., 15
let mut ctrl = TestCtrl::new();
let mut ringbuf = DmaRingBuffer::new(&mut dma_buf);
ringbuf.first = 2;
ringbuf.ndtr = 6;
// The dma controller has written 6 + 2 bytes and has reloaded NDTR
ctrl.tcif = true;
ctrl.set_next_ndtr(14);
let mut buf = [0; 2];
assert_eq!(2, ringbuf.read(&mut ctrl, &mut buf).unwrap());
assert_eq!([2, 3], buf);
assert_eq!(true, ctrl.tcif); // The interrupt flag IS NOT cleared
}
#[test]
fn can_read_when_dma_writer_is_wrapped_and_read_wraps() {
let mut dma_buf: [u8; 16] = array::from_fn(|idx| idx as u8); // 0, 1, ..., 15
let mut ctrl = TestCtrl::new();
let mut ringbuf = DmaRingBuffer::new(&mut dma_buf);
ringbuf.first = 12;
ringbuf.ndtr = 10;
// The dma controller has written 6 + 2 bytes and has reloaded NDTR
ctrl.tcif = true;
ctrl.set_next_ndtr(14);
let mut buf = [0; 10];
assert_eq!(10, ringbuf.read(&mut ctrl, &mut buf).unwrap());
assert_eq!([12, 13, 14, 15, 0, 1, 2, 3, 4, 5], buf);
assert_eq!(false, ctrl.tcif); // The interrupt flag IS cleared
}
#[test]
fn cannot_read_when_dma_writer_wraps_with_same_ndtr() {
let mut dma_buf = [0u8; 16];
let mut ctrl = TestCtrl::new();
let mut ringbuf = DmaRingBuffer::new(&mut dma_buf);
ringbuf.first = 6;
ringbuf.ndtr = 10;
ctrl.set_next_ndtr(9);
assert!(ringbuf.is_empty()); // The ring buffer thinks that it is empty
// The dma controller has written exactly 16 bytes
ctrl.tcif = true;
let mut buf = [0; 2];
assert_eq!(Err(OverrunError), ringbuf.read(&mut ctrl, &mut buf));
assert_eq!(false, ctrl.tcif); // The interrupt flag IS cleared
}
#[test]
fn cannot_read_when_dma_writer_overwrites_during_not_wrapping_read() {
let mut dma_buf: [u8; 16] = array::from_fn(|idx| idx as u8); // 0, 1, ..., 15
let mut ctrl = TestCtrl::new();
let mut ringbuf = DmaRingBuffer::new(&mut dma_buf);
ringbuf.first = 2;
ringbuf.ndtr = 6;
// The dma controller has written 6 + 3 bytes and has reloaded NDTR
ctrl.tcif = true;
ctrl.set_next_ndtr(13);
let mut buf = [0; 2];
assert_eq!(Err(OverrunError), ringbuf.read(&mut ctrl, &mut buf));
assert_eq!(false, ctrl.tcif); // The interrupt flag IS cleared
}
#[test]
fn cannot_read_when_dma_writer_overwrites_during_wrapping_read() {
let mut dma_buf: [u8; 16] = array::from_fn(|idx| idx as u8); // 0, 1, ..., 15
let mut ctrl = TestCtrl::new();
let mut ringbuf = DmaRingBuffer::new(&mut dma_buf);
ringbuf.first = 12;
ringbuf.ndtr = 10;
// The dma controller has written 6 + 13 bytes and has reloaded NDTR
ctrl.tcif = true;
ctrl.set_next_ndtr(3);
let mut buf = [0; 2];
assert_eq!(Err(OverrunError), ringbuf.read(&mut ctrl, &mut buf));
assert_eq!(false, ctrl.tcif); // The interrupt flag IS cleared
}
}