embassy/embassy-nrf/src/buffered_uarte.rs
Dario Nieuwenhuis b5cf332cc0 nrf: docs.
2023-02-01 01:17:41 +01:00

526 lines
19 KiB
Rust

//! Async buffered UART driver.
//!
//! WARNING!!! The functionality provided here is intended to be used only
//! in situations where hardware flow control are available i.e. CTS and RTS.
//! This is a problem that should be addressed at a later stage and can be
//! fully explained at <https://github.com/embassy-rs/embassy/issues/536>.
//!
//! Note that discarding a future from a read or write operation may lead to losing
//! data. For example, when using `futures_util::future::select` and completion occurs
//! on the "other" future, you should capture the incomplete future and continue to use
//! it for the next read or write. This pattern is a consideration for all IO, and not
//! just serial communications.
//!
//! Please also see [crate::uarte] to understand when [BufferedUarte] should be used.
use core::cell::RefCell;
use core::cmp::min;
use core::future::poll_fn;
use core::sync::atomic::{compiler_fence, Ordering};
use core::task::Poll;
use embassy_cortex_m::peripheral::{PeripheralMutex, PeripheralState, StateStorage};
use embassy_hal_common::ring_buffer::RingBuffer;
use embassy_hal_common::{into_ref, PeripheralRef};
use embassy_sync::waitqueue::WakerRegistration;
// Re-export SVD variants to allow user to directly set values
pub use pac::uarte0::{baudrate::BAUDRATE_A as Baudrate, config::PARITY_A as Parity};
use crate::gpio::{self, Pin as GpioPin};
use crate::interrupt::InterruptExt;
use crate::ppi::{AnyConfigurableChannel, ConfigurableChannel, Event, Ppi, Task};
use crate::timer::{Frequency, Instance as TimerInstance, Timer};
use crate::uarte::{apply_workaround_for_enable_anomaly, Config, Instance as UarteInstance};
use crate::{pac, Peripheral};
#[derive(Copy, Clone, Debug, PartialEq)]
enum RxState {
Idle,
Receiving,
}
#[derive(Copy, Clone, Debug, PartialEq)]
enum TxState {
Idle,
Transmitting(usize),
}
/// A type for storing the state of the UARTE peripheral that can be stored in a static.
pub struct State<'d, U: UarteInstance, T: TimerInstance>(StateStorage<StateInner<'d, U, T>>);
impl<'d, U: UarteInstance, T: TimerInstance> State<'d, U, T> {
/// Create an instance for storing UARTE peripheral state.
pub fn new() -> Self {
Self(StateStorage::new())
}
}
struct StateInner<'d, U: UarteInstance, T: TimerInstance> {
_peri: PeripheralRef<'d, U>,
timer: Timer<'d, T>,
_ppi_ch1: Ppi<'d, AnyConfigurableChannel, 1, 2>,
_ppi_ch2: Ppi<'d, AnyConfigurableChannel, 1, 1>,
rx: RingBuffer<'d>,
rx_state: RxState,
rx_waker: WakerRegistration,
tx: RingBuffer<'d>,
tx_state: TxState,
tx_waker: WakerRegistration,
}
/// Buffered UARTE driver.
pub struct BufferedUarte<'d, U: UarteInstance, T: TimerInstance> {
inner: RefCell<PeripheralMutex<'d, StateInner<'d, U, T>>>,
}
impl<'d, U: UarteInstance, T: TimerInstance> Unpin for BufferedUarte<'d, U, T> {}
impl<'d, U: UarteInstance, T: TimerInstance> BufferedUarte<'d, U, T> {
/// Create a new instance of a BufferedUarte.
///
/// See the [module documentation](crate::buffered_uarte) for more details about the intended use.
///
/// The BufferedUarte uses the provided state to store the buffers and peripheral state. The timer and ppi channels are used to 'emulate' idle line detection so that read operations
/// can return early if there is no data to receive.
pub fn new(
state: &'d mut State<'d, U, T>,
peri: impl Peripheral<P = U> + 'd,
timer: impl Peripheral<P = T> + 'd,
ppi_ch1: impl Peripheral<P = impl ConfigurableChannel + 'd> + 'd,
ppi_ch2: impl Peripheral<P = impl ConfigurableChannel + 'd> + 'd,
irq: impl Peripheral<P = U::Interrupt> + 'd,
rxd: impl Peripheral<P = impl GpioPin> + 'd,
txd: impl Peripheral<P = impl GpioPin> + 'd,
cts: impl Peripheral<P = impl GpioPin> + 'd,
rts: impl Peripheral<P = impl GpioPin> + 'd,
config: Config,
rx_buffer: &'d mut [u8],
tx_buffer: &'d mut [u8],
) -> Self {
into_ref!(peri, ppi_ch1, ppi_ch2, irq, rxd, txd, cts, rts);
let r = U::regs();
let mut timer = Timer::new(timer);
rxd.conf().write(|w| w.input().connect().drive().h0h1());
r.psel.rxd.write(|w| unsafe { w.bits(rxd.psel_bits()) });
txd.set_high();
txd.conf().write(|w| w.dir().output().drive().h0h1());
r.psel.txd.write(|w| unsafe { w.bits(txd.psel_bits()) });
cts.conf().write(|w| w.input().connect().drive().h0h1());
r.psel.cts.write(|w| unsafe { w.bits(cts.psel_bits()) });
rts.set_high();
rts.conf().write(|w| w.dir().output().drive().h0h1());
r.psel.rts.write(|w| unsafe { w.bits(rts.psel_bits()) });
r.baudrate.write(|w| w.baudrate().variant(config.baudrate));
r.config.write(|w| w.parity().variant(config.parity));
// Configure
r.config.write(|w| {
w.hwfc().bit(true);
w.parity().variant(config.parity);
w
});
r.baudrate.write(|w| w.baudrate().variant(config.baudrate));
// Enable interrupts
r.intenset.write(|w| w.endrx().set().endtx().set());
// Disable the irq, let the Registration enable it when everything is set up.
irq.disable();
irq.pend();
// Enable UARTE instance
apply_workaround_for_enable_anomaly(&r);
r.enable.write(|w| w.enable().enabled());
// BAUDRATE register values are `baudrate * 2^32 / 16000000`
// source: https://devzone.nordicsemi.com/f/nordic-q-a/391/uart-baudrate-register-values
//
// We want to stop RX if line is idle for 2 bytes worth of time
// That is 20 bits (each byte is 1 start bit + 8 data bits + 1 stop bit)
// This gives us the amount of 16M ticks for 20 bits.
let timeout = 0x8000_0000 / (config.baudrate as u32 / 40);
timer.set_frequency(Frequency::F16MHz);
timer.cc(0).write(timeout);
timer.cc(0).short_compare_clear();
timer.cc(0).short_compare_stop();
let mut ppi_ch1 = Ppi::new_one_to_two(
ppi_ch1.map_into(),
Event::from_reg(&r.events_rxdrdy),
timer.task_clear(),
timer.task_start(),
);
ppi_ch1.enable();
let mut ppi_ch2 = Ppi::new_one_to_one(
ppi_ch2.map_into(),
timer.cc(0).event_compare(),
Task::from_reg(&r.tasks_stoprx),
);
ppi_ch2.enable();
Self {
inner: RefCell::new(PeripheralMutex::new(irq, &mut state.0, move || StateInner {
_peri: peri,
timer,
_ppi_ch1: ppi_ch1,
_ppi_ch2: ppi_ch2,
rx: RingBuffer::new(rx_buffer),
rx_state: RxState::Idle,
rx_waker: WakerRegistration::new(),
tx: RingBuffer::new(tx_buffer),
tx_state: TxState::Idle,
tx_waker: WakerRegistration::new(),
})),
}
}
/// Adjust the baud rate to the provided value.
pub fn set_baudrate(&mut self, baudrate: Baudrate) {
self.inner.borrow_mut().with(|state| {
let r = U::regs();
let timeout = 0x8000_0000 / (baudrate as u32 / 40);
state.timer.cc(0).write(timeout);
state.timer.clear();
r.baudrate.write(|w| w.baudrate().variant(baudrate));
});
}
/// Split the UART in reader and writer parts.
///
/// This allows reading and writing concurrently from independent tasks.
pub fn split<'u>(&'u mut self) -> (BufferedUarteRx<'u, 'd, U, T>, BufferedUarteTx<'u, 'd, U, T>) {
(BufferedUarteRx { inner: self }, BufferedUarteTx { inner: self })
}
async fn inner_read<'a>(&'a self, buf: &'a mut [u8]) -> Result<usize, core::convert::Infallible> {
poll_fn(move |cx| {
let mut do_pend = false;
let mut inner = self.inner.borrow_mut();
let res = inner.with(|state| {
compiler_fence(Ordering::SeqCst);
trace!("poll_read");
// We have data ready in buffer? Return it.
let data = state.rx.pop_buf();
if !data.is_empty() {
trace!(" got {:?} {:?}", data.as_ptr() as u32, data.len());
let len = data.len().min(buf.len());
buf[..len].copy_from_slice(&data[..len]);
state.rx.pop(len);
do_pend = true;
return Poll::Ready(Ok(len));
}
trace!(" empty");
state.rx_waker.register(cx.waker());
Poll::Pending
});
if do_pend {
inner.pend();
}
res
})
.await
}
async fn inner_write<'a>(&'a self, buf: &'a [u8]) -> Result<usize, core::convert::Infallible> {
poll_fn(move |cx| {
let mut inner = self.inner.borrow_mut();
let res = inner.with(|state| {
trace!("poll_write: {:?}", buf.len());
let tx_buf = state.tx.push_buf();
if tx_buf.is_empty() {
trace!("poll_write: pending");
state.tx_waker.register(cx.waker());
return Poll::Pending;
}
let n = min(tx_buf.len(), buf.len());
tx_buf[..n].copy_from_slice(&buf[..n]);
state.tx.push(n);
trace!("poll_write: queued {:?}", n);
compiler_fence(Ordering::SeqCst);
Poll::Ready(Ok(n))
});
inner.pend();
res
})
.await
}
async fn inner_flush<'a>(&'a self) -> Result<(), core::convert::Infallible> {
poll_fn(move |cx| {
self.inner.borrow_mut().with(|state| {
trace!("poll_flush");
if !state.tx.is_empty() {
trace!("poll_flush: pending");
state.tx_waker.register(cx.waker());
return Poll::Pending;
}
Poll::Ready(Ok(()))
})
})
.await
}
async fn inner_fill_buf<'a>(&'a self) -> Result<&'a [u8], core::convert::Infallible> {
poll_fn(move |cx| {
self.inner.borrow_mut().with(|state| {
compiler_fence(Ordering::SeqCst);
trace!("fill_buf");
// We have data ready in buffer? Return it.
let buf = state.rx.pop_buf();
if !buf.is_empty() {
trace!(" got {:?} {:?}", buf.as_ptr() as u32, buf.len());
let buf: &[u8] = buf;
// Safety: buffer lives as long as uart
let buf: &[u8] = unsafe { core::mem::transmute(buf) };
return Poll::Ready(Ok(buf));
}
trace!(" empty");
state.rx_waker.register(cx.waker());
Poll::<Result<&[u8], core::convert::Infallible>>::Pending
})
})
.await
}
fn inner_consume(&self, amt: usize) {
let mut inner = self.inner.borrow_mut();
let signal = inner.with(|state| {
let full = state.rx.is_full();
state.rx.pop(amt);
full
});
if signal {
inner.pend();
}
}
}
/// Reader part of the buffered UARTE driver.
pub struct BufferedUarteTx<'u, 'd, U: UarteInstance, T: TimerInstance> {
inner: &'u BufferedUarte<'d, U, T>,
}
/// Writer part of the buffered UARTE driver.
pub struct BufferedUarteRx<'u, 'd, U: UarteInstance, T: TimerInstance> {
inner: &'u BufferedUarte<'d, U, T>,
}
impl<'d, U: UarteInstance, T: TimerInstance> embedded_io::Io for BufferedUarte<'d, U, T> {
type Error = core::convert::Infallible;
}
impl<'u, 'd, U: UarteInstance, T: TimerInstance> embedded_io::Io for BufferedUarteRx<'u, 'd, U, T> {
type Error = core::convert::Infallible;
}
impl<'u, 'd, U: UarteInstance, T: TimerInstance> embedded_io::Io for BufferedUarteTx<'u, 'd, U, T> {
type Error = core::convert::Infallible;
}
impl<'d, U: UarteInstance, T: TimerInstance> embedded_io::asynch::Read for BufferedUarte<'d, U, T> {
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
self.inner_read(buf).await
}
}
impl<'u, 'd: 'u, U: UarteInstance, T: TimerInstance> embedded_io::asynch::Read for BufferedUarteRx<'u, 'd, U, T> {
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
self.inner.inner_read(buf).await
}
}
impl<'d, U: UarteInstance, T: TimerInstance> embedded_io::asynch::BufRead for BufferedUarte<'d, U, T> {
async fn fill_buf(&mut self) -> Result<&[u8], Self::Error> {
self.inner_fill_buf().await
}
fn consume(&mut self, amt: usize) {
self.inner_consume(amt)
}
}
impl<'u, 'd: 'u, U: UarteInstance, T: TimerInstance> embedded_io::asynch::BufRead for BufferedUarteRx<'u, 'd, U, T> {
async fn fill_buf(&mut self) -> Result<&[u8], Self::Error> {
self.inner.inner_fill_buf().await
}
fn consume(&mut self, amt: usize) {
self.inner.inner_consume(amt)
}
}
impl<'d, U: UarteInstance, T: TimerInstance> embedded_io::asynch::Write for BufferedUarte<'d, U, T> {
async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
self.inner_write(buf).await
}
async fn flush(&mut self) -> Result<(), Self::Error> {
self.inner_flush().await
}
}
impl<'u, 'd: 'u, U: UarteInstance, T: TimerInstance> embedded_io::asynch::Write for BufferedUarteTx<'u, 'd, U, T> {
async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
self.inner.inner_write(buf).await
}
async fn flush(&mut self) -> Result<(), Self::Error> {
self.inner.inner_flush().await
}
}
impl<'a, U: UarteInstance, T: TimerInstance> Drop for StateInner<'a, U, T> {
fn drop(&mut self) {
let r = U::regs();
self.timer.stop();
r.inten.reset();
r.events_rxto.reset();
r.tasks_stoprx.write(|w| unsafe { w.bits(1) });
r.events_txstopped.reset();
r.tasks_stoptx.write(|w| unsafe { w.bits(1) });
while r.events_txstopped.read().bits() == 0 {}
while r.events_rxto.read().bits() == 0 {}
r.enable.write(|w| w.enable().disabled());
gpio::deconfigure_pin(r.psel.rxd.read().bits());
gpio::deconfigure_pin(r.psel.txd.read().bits());
gpio::deconfigure_pin(r.psel.rts.read().bits());
gpio::deconfigure_pin(r.psel.cts.read().bits());
}
}
impl<'a, U: UarteInstance, T: TimerInstance> PeripheralState for StateInner<'a, U, T> {
type Interrupt = U::Interrupt;
fn on_interrupt(&mut self) {
trace!("irq: start");
let r = U::regs();
loop {
match self.rx_state {
RxState::Idle => {
trace!(" irq_rx: in state idle");
let buf = self.rx.push_buf();
if !buf.is_empty() {
trace!(" irq_rx: starting {:?}", buf.len());
self.rx_state = RxState::Receiving;
// Set up the DMA read
r.rxd.ptr.write(|w|
// The PTR field is a full 32 bits wide and accepts the full range
// of values.
unsafe { w.ptr().bits(buf.as_ptr() as u32) });
r.rxd.maxcnt.write(|w|
// We're giving it the length of the buffer, so no danger of
// accessing invalid memory. We have verified that the length of the
// buffer fits in an `u8`, so the cast to `u8` is also fine.
//
// The MAXCNT field is at least 8 bits wide and accepts the full
// range of values.
unsafe { w.maxcnt().bits(buf.len() as _) });
trace!(" irq_rx: buf {:?} {:?}", buf.as_ptr() as u32, buf.len());
// Start UARTE Receive transaction
r.tasks_startrx.write(|w| unsafe { w.bits(1) });
}
break;
}
RxState::Receiving => {
trace!(" irq_rx: in state receiving");
if r.events_endrx.read().bits() != 0 {
self.timer.stop();
let n: usize = r.rxd.amount.read().amount().bits() as usize;
trace!(" irq_rx: endrx {:?}", n);
self.rx.push(n);
r.events_endrx.reset();
self.rx_waker.wake();
self.rx_state = RxState::Idle;
} else {
break;
}
}
}
}
loop {
match self.tx_state {
TxState::Idle => {
trace!(" irq_tx: in state Idle");
let buf = self.tx.pop_buf();
if !buf.is_empty() {
trace!(" irq_tx: starting {:?}", buf.len());
self.tx_state = TxState::Transmitting(buf.len());
// Set up the DMA write
r.txd.ptr.write(|w|
// The PTR field is a full 32 bits wide and accepts the full range
// of values.
unsafe { w.ptr().bits(buf.as_ptr() as u32) });
r.txd.maxcnt.write(|w|
// We're giving it the length of the buffer, so no danger of
// accessing invalid memory. We have verified that the length of the
// buffer fits in an `u8`, so the cast to `u8` is also fine.
//
// The MAXCNT field is 8 bits wide and accepts the full range of
// values.
unsafe { w.maxcnt().bits(buf.len() as _) });
// Start UARTE Transmit transaction
r.tasks_starttx.write(|w| unsafe { w.bits(1) });
}
break;
}
TxState::Transmitting(n) => {
trace!(" irq_tx: in state Transmitting");
if r.events_endtx.read().bits() != 0 {
r.events_endtx.reset();
trace!(" irq_tx: endtx {:?}", n);
self.tx.pop(n);
self.tx_waker.wake();
self.tx_state = TxState::Idle;
} else {
break;
}
}
}
}
trace!("irq: end");
}
}