eeb1515e9f
958: Implement proper `Drop` for `BufferedUarte` r=lulf a=ZoeyR The drop method in `BufferedUarte` was prone to hanging indefinitely and also didn't actually disable the peripheral. I mostly copied over the drop method from `Uarte` with some modifications since `BufferedUarte` could have a transmit lasting indefinitely. Co-authored-by: Zoey Riordan <zoey@dos.cafe>
553 lines
19 KiB
Rust
553 lines
19 KiB
Rust
//! Async buffered UART
|
|
//!
|
|
//! WARNING!!! The functionality provided here is intended to be used only
|
|
//! in situations where hardware flow control are available i.e. CTS and RTS.
|
|
//! This is a problem that should be addressed at a later stage and can be
|
|
//! fully explained at <https://github.com/embassy-rs/embassy/issues/536>.
|
|
//!
|
|
//! Note that discarding a future from a read or write operation may lead to losing
|
|
//! data. For example, when using `futures_util::future::select` and completion occurs
|
|
//! on the "other" future, you should capture the incomplete future and continue to use
|
|
//! it for the next read or write. This pattern is a consideration for all IO, and not
|
|
//! just serial communications.
|
|
//!
|
|
//! Please also see [crate::uarte] to understand when [BufferedUarte] should be used.
|
|
|
|
use core::cell::RefCell;
|
|
use core::cmp::min;
|
|
use core::future::{poll_fn, Future};
|
|
use core::sync::atomic::{compiler_fence, Ordering};
|
|
use core::task::Poll;
|
|
|
|
use embassy_cortex_m::peripheral::{PeripheralMutex, PeripheralState, StateStorage};
|
|
use embassy_hal_common::ring_buffer::RingBuffer;
|
|
use embassy_hal_common::{into_ref, PeripheralRef};
|
|
use embassy_sync::waitqueue::WakerRegistration;
|
|
// Re-export SVD variants to allow user to directly set values
|
|
pub use pac::uarte0::{baudrate::BAUDRATE_A as Baudrate, config::PARITY_A as Parity};
|
|
|
|
use crate::gpio::{self, Pin as GpioPin};
|
|
use crate::interrupt::InterruptExt;
|
|
use crate::ppi::{AnyConfigurableChannel, ConfigurableChannel, Event, Ppi, Task};
|
|
use crate::timer::{Frequency, Instance as TimerInstance, Timer};
|
|
use crate::uarte::{apply_workaround_for_enable_anomaly, Config, Instance as UarteInstance};
|
|
use crate::{pac, Peripheral};
|
|
|
|
#[derive(Copy, Clone, Debug, PartialEq)]
|
|
enum RxState {
|
|
Idle,
|
|
Receiving,
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug, PartialEq)]
|
|
enum TxState {
|
|
Idle,
|
|
Transmitting(usize),
|
|
}
|
|
|
|
/// A type for storing the state of the UARTE peripheral that can be stored in a static.
|
|
pub struct State<'d, U: UarteInstance, T: TimerInstance>(StateStorage<StateInner<'d, U, T>>);
|
|
impl<'d, U: UarteInstance, T: TimerInstance> State<'d, U, T> {
|
|
/// Create an instance for storing UARTE peripheral state.
|
|
pub fn new() -> Self {
|
|
Self(StateStorage::new())
|
|
}
|
|
}
|
|
|
|
struct StateInner<'d, U: UarteInstance, T: TimerInstance> {
|
|
_peri: PeripheralRef<'d, U>,
|
|
timer: Timer<'d, T>,
|
|
_ppi_ch1: Ppi<'d, AnyConfigurableChannel, 1, 2>,
|
|
_ppi_ch2: Ppi<'d, AnyConfigurableChannel, 1, 1>,
|
|
|
|
rx: RingBuffer<'d>,
|
|
rx_state: RxState,
|
|
rx_waker: WakerRegistration,
|
|
|
|
tx: RingBuffer<'d>,
|
|
tx_state: TxState,
|
|
tx_waker: WakerRegistration,
|
|
}
|
|
|
|
/// Interface to a UARTE instance
|
|
pub struct BufferedUarte<'d, U: UarteInstance, T: TimerInstance> {
|
|
inner: RefCell<PeripheralMutex<'d, StateInner<'d, U, T>>>,
|
|
}
|
|
|
|
impl<'d, U: UarteInstance, T: TimerInstance> Unpin for BufferedUarte<'d, U, T> {}
|
|
|
|
impl<'d, U: UarteInstance, T: TimerInstance> BufferedUarte<'d, U, T> {
|
|
/// Create a new instance of a BufferedUarte.
|
|
///
|
|
/// See the [module documentation](crate::buffered_uarte) for more details about the intended use.
|
|
///
|
|
/// The BufferedUarte uses the provided state to store the buffers and peripheral state. The timer and ppi channels are used to 'emulate' idle line detection so that read operations
|
|
/// can return early if there is no data to receive.
|
|
pub fn new(
|
|
state: &'d mut State<'d, U, T>,
|
|
peri: impl Peripheral<P = U> + 'd,
|
|
timer: impl Peripheral<P = T> + 'd,
|
|
ppi_ch1: impl Peripheral<P = impl ConfigurableChannel + 'd> + 'd,
|
|
ppi_ch2: impl Peripheral<P = impl ConfigurableChannel + 'd> + 'd,
|
|
irq: impl Peripheral<P = U::Interrupt> + 'd,
|
|
rxd: impl Peripheral<P = impl GpioPin> + 'd,
|
|
txd: impl Peripheral<P = impl GpioPin> + 'd,
|
|
cts: impl Peripheral<P = impl GpioPin> + 'd,
|
|
rts: impl Peripheral<P = impl GpioPin> + 'd,
|
|
config: Config,
|
|
rx_buffer: &'d mut [u8],
|
|
tx_buffer: &'d mut [u8],
|
|
) -> Self {
|
|
into_ref!(peri, ppi_ch1, ppi_ch2, irq, rxd, txd, cts, rts);
|
|
|
|
let r = U::regs();
|
|
|
|
let mut timer = Timer::new(timer);
|
|
|
|
rxd.conf().write(|w| w.input().connect().drive().h0h1());
|
|
r.psel.rxd.write(|w| unsafe { w.bits(rxd.psel_bits()) });
|
|
|
|
txd.set_high();
|
|
txd.conf().write(|w| w.dir().output().drive().h0h1());
|
|
r.psel.txd.write(|w| unsafe { w.bits(txd.psel_bits()) });
|
|
|
|
cts.conf().write(|w| w.input().connect().drive().h0h1());
|
|
r.psel.cts.write(|w| unsafe { w.bits(cts.psel_bits()) });
|
|
|
|
rts.set_high();
|
|
rts.conf().write(|w| w.dir().output().drive().h0h1());
|
|
r.psel.rts.write(|w| unsafe { w.bits(rts.psel_bits()) });
|
|
|
|
r.baudrate.write(|w| w.baudrate().variant(config.baudrate));
|
|
r.config.write(|w| w.parity().variant(config.parity));
|
|
|
|
// Configure
|
|
r.config.write(|w| {
|
|
w.hwfc().bit(true);
|
|
w.parity().variant(config.parity);
|
|
w
|
|
});
|
|
r.baudrate.write(|w| w.baudrate().variant(config.baudrate));
|
|
|
|
// Enable interrupts
|
|
r.intenset.write(|w| w.endrx().set().endtx().set());
|
|
|
|
// Disable the irq, let the Registration enable it when everything is set up.
|
|
irq.disable();
|
|
irq.pend();
|
|
|
|
// Enable UARTE instance
|
|
apply_workaround_for_enable_anomaly(&r);
|
|
r.enable.write(|w| w.enable().enabled());
|
|
|
|
// BAUDRATE register values are `baudrate * 2^32 / 16000000`
|
|
// source: https://devzone.nordicsemi.com/f/nordic-q-a/391/uart-baudrate-register-values
|
|
//
|
|
// We want to stop RX if line is idle for 2 bytes worth of time
|
|
// That is 20 bits (each byte is 1 start bit + 8 data bits + 1 stop bit)
|
|
// This gives us the amount of 16M ticks for 20 bits.
|
|
let timeout = 0x8000_0000 / (config.baudrate as u32 / 40);
|
|
|
|
timer.set_frequency(Frequency::F16MHz);
|
|
timer.cc(0).write(timeout);
|
|
timer.cc(0).short_compare_clear();
|
|
timer.cc(0).short_compare_stop();
|
|
|
|
let mut ppi_ch1 = Ppi::new_one_to_two(
|
|
ppi_ch1.map_into(),
|
|
Event::from_reg(&r.events_rxdrdy),
|
|
timer.task_clear(),
|
|
timer.task_start(),
|
|
);
|
|
ppi_ch1.enable();
|
|
|
|
let mut ppi_ch2 = Ppi::new_one_to_one(
|
|
ppi_ch2.map_into(),
|
|
timer.cc(0).event_compare(),
|
|
Task::from_reg(&r.tasks_stoprx),
|
|
);
|
|
ppi_ch2.enable();
|
|
|
|
Self {
|
|
inner: RefCell::new(PeripheralMutex::new(irq, &mut state.0, move || StateInner {
|
|
_peri: peri,
|
|
timer,
|
|
_ppi_ch1: ppi_ch1,
|
|
_ppi_ch2: ppi_ch2,
|
|
|
|
rx: RingBuffer::new(rx_buffer),
|
|
rx_state: RxState::Idle,
|
|
rx_waker: WakerRegistration::new(),
|
|
|
|
tx: RingBuffer::new(tx_buffer),
|
|
tx_state: TxState::Idle,
|
|
tx_waker: WakerRegistration::new(),
|
|
})),
|
|
}
|
|
}
|
|
|
|
/// Adjust the baud rate to the provided value.
|
|
pub fn set_baudrate(&mut self, baudrate: Baudrate) {
|
|
self.inner.borrow_mut().with(|state| {
|
|
let r = U::regs();
|
|
|
|
let timeout = 0x8000_0000 / (baudrate as u32 / 40);
|
|
state.timer.cc(0).write(timeout);
|
|
state.timer.clear();
|
|
|
|
r.baudrate.write(|w| w.baudrate().variant(baudrate));
|
|
});
|
|
}
|
|
|
|
pub fn split<'u>(&'u mut self) -> (BufferedUarteRx<'u, 'd, U, T>, BufferedUarteTx<'u, 'd, U, T>) {
|
|
(BufferedUarteRx { inner: self }, BufferedUarteTx { inner: self })
|
|
}
|
|
|
|
async fn inner_read<'a>(&'a self, buf: &'a mut [u8]) -> Result<usize, core::convert::Infallible> {
|
|
poll_fn(move |cx| {
|
|
let mut do_pend = false;
|
|
let mut inner = self.inner.borrow_mut();
|
|
let res = inner.with(|state| {
|
|
compiler_fence(Ordering::SeqCst);
|
|
trace!("poll_read");
|
|
|
|
// We have data ready in buffer? Return it.
|
|
let data = state.rx.pop_buf();
|
|
if !data.is_empty() {
|
|
trace!(" got {:?} {:?}", data.as_ptr() as u32, data.len());
|
|
let len = data.len().min(buf.len());
|
|
buf[..len].copy_from_slice(&data[..len]);
|
|
state.rx.pop(len);
|
|
do_pend = true;
|
|
return Poll::Ready(Ok(len));
|
|
}
|
|
|
|
trace!(" empty");
|
|
state.rx_waker.register(cx.waker());
|
|
Poll::Pending
|
|
});
|
|
if do_pend {
|
|
inner.pend();
|
|
}
|
|
|
|
res
|
|
})
|
|
.await
|
|
}
|
|
|
|
async fn inner_write<'a>(&'a self, buf: &'a [u8]) -> Result<usize, core::convert::Infallible> {
|
|
poll_fn(move |cx| {
|
|
let mut inner = self.inner.borrow_mut();
|
|
let res = inner.with(|state| {
|
|
trace!("poll_write: {:?}", buf.len());
|
|
|
|
let tx_buf = state.tx.push_buf();
|
|
if tx_buf.is_empty() {
|
|
trace!("poll_write: pending");
|
|
state.tx_waker.register(cx.waker());
|
|
return Poll::Pending;
|
|
}
|
|
|
|
let n = min(tx_buf.len(), buf.len());
|
|
tx_buf[..n].copy_from_slice(&buf[..n]);
|
|
state.tx.push(n);
|
|
|
|
trace!("poll_write: queued {:?}", n);
|
|
|
|
compiler_fence(Ordering::SeqCst);
|
|
|
|
Poll::Ready(Ok(n))
|
|
});
|
|
|
|
inner.pend();
|
|
|
|
res
|
|
})
|
|
.await
|
|
}
|
|
|
|
async fn inner_flush<'a>(&'a self) -> Result<(), core::convert::Infallible> {
|
|
poll_fn(move |cx| {
|
|
self.inner.borrow_mut().with(|state| {
|
|
trace!("poll_flush");
|
|
|
|
if !state.tx.is_empty() {
|
|
trace!("poll_flush: pending");
|
|
state.tx_waker.register(cx.waker());
|
|
return Poll::Pending;
|
|
}
|
|
|
|
Poll::Ready(Ok(()))
|
|
})
|
|
})
|
|
.await
|
|
}
|
|
|
|
async fn inner_fill_buf<'a>(&'a self) -> Result<&'a [u8], core::convert::Infallible> {
|
|
poll_fn(move |cx| {
|
|
self.inner.borrow_mut().with(|state| {
|
|
compiler_fence(Ordering::SeqCst);
|
|
trace!("fill_buf");
|
|
|
|
// We have data ready in buffer? Return it.
|
|
let buf = state.rx.pop_buf();
|
|
if !buf.is_empty() {
|
|
trace!(" got {:?} {:?}", buf.as_ptr() as u32, buf.len());
|
|
let buf: &[u8] = buf;
|
|
// Safety: buffer lives as long as uart
|
|
let buf: &[u8] = unsafe { core::mem::transmute(buf) };
|
|
return Poll::Ready(Ok(buf));
|
|
}
|
|
|
|
trace!(" empty");
|
|
state.rx_waker.register(cx.waker());
|
|
Poll::<Result<&[u8], core::convert::Infallible>>::Pending
|
|
})
|
|
})
|
|
.await
|
|
}
|
|
|
|
fn inner_consume(&self, amt: usize) {
|
|
let mut inner = self.inner.borrow_mut();
|
|
let signal = inner.with(|state| {
|
|
let full = state.rx.is_full();
|
|
state.rx.pop(amt);
|
|
full
|
|
});
|
|
if signal {
|
|
inner.pend();
|
|
}
|
|
}
|
|
}
|
|
|
|
pub struct BufferedUarteTx<'u, 'd, U: UarteInstance, T: TimerInstance> {
|
|
inner: &'u BufferedUarte<'d, U, T>,
|
|
}
|
|
|
|
pub struct BufferedUarteRx<'u, 'd, U: UarteInstance, T: TimerInstance> {
|
|
inner: &'u BufferedUarte<'d, U, T>,
|
|
}
|
|
|
|
impl<'d, U: UarteInstance, T: TimerInstance> embedded_io::Io for BufferedUarte<'d, U, T> {
|
|
type Error = core::convert::Infallible;
|
|
}
|
|
|
|
impl<'u, 'd, U: UarteInstance, T: TimerInstance> embedded_io::Io for BufferedUarteRx<'u, 'd, U, T> {
|
|
type Error = core::convert::Infallible;
|
|
}
|
|
|
|
impl<'u, 'd, U: UarteInstance, T: TimerInstance> embedded_io::Io for BufferedUarteTx<'u, 'd, U, T> {
|
|
type Error = core::convert::Infallible;
|
|
}
|
|
|
|
impl<'d, U: UarteInstance, T: TimerInstance> embedded_io::asynch::Read for BufferedUarte<'d, U, T> {
|
|
type ReadFuture<'a> = impl Future<Output = Result<usize, Self::Error>>
|
|
where
|
|
Self: 'a;
|
|
|
|
fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a> {
|
|
self.inner_read(buf)
|
|
}
|
|
}
|
|
|
|
impl<'u, 'd: 'u, U: UarteInstance, T: TimerInstance> embedded_io::asynch::Read for BufferedUarteRx<'u, 'd, U, T> {
|
|
type ReadFuture<'a> = impl Future<Output = Result<usize, Self::Error>>
|
|
where
|
|
Self: 'a;
|
|
|
|
fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a> {
|
|
self.inner.inner_read(buf)
|
|
}
|
|
}
|
|
|
|
impl<'d, U: UarteInstance, T: TimerInstance> embedded_io::asynch::BufRead for BufferedUarte<'d, U, T> {
|
|
type FillBufFuture<'a> = impl Future<Output = Result<&'a [u8], Self::Error>>
|
|
where
|
|
Self: 'a;
|
|
|
|
fn fill_buf<'a>(&'a mut self) -> Self::FillBufFuture<'a> {
|
|
self.inner_fill_buf()
|
|
}
|
|
|
|
fn consume(&mut self, amt: usize) {
|
|
self.inner_consume(amt)
|
|
}
|
|
}
|
|
|
|
impl<'u, 'd: 'u, U: UarteInstance, T: TimerInstance> embedded_io::asynch::BufRead for BufferedUarteRx<'u, 'd, U, T> {
|
|
type FillBufFuture<'a> = impl Future<Output = Result<&'a [u8], Self::Error>>
|
|
where
|
|
Self: 'a;
|
|
|
|
fn fill_buf<'a>(&'a mut self) -> Self::FillBufFuture<'a> {
|
|
self.inner.inner_fill_buf()
|
|
}
|
|
|
|
fn consume(&mut self, amt: usize) {
|
|
self.inner.inner_consume(amt)
|
|
}
|
|
}
|
|
|
|
impl<'d, U: UarteInstance, T: TimerInstance> embedded_io::asynch::Write for BufferedUarte<'d, U, T> {
|
|
type WriteFuture<'a> = impl Future<Output = Result<usize, Self::Error>>
|
|
where
|
|
Self: 'a;
|
|
|
|
fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a> {
|
|
self.inner_write(buf)
|
|
}
|
|
|
|
type FlushFuture<'a> = impl Future<Output = Result<(), Self::Error>>
|
|
where
|
|
Self: 'a;
|
|
|
|
fn flush<'a>(&'a mut self) -> Self::FlushFuture<'a> {
|
|
self.inner_flush()
|
|
}
|
|
}
|
|
|
|
impl<'u, 'd: 'u, U: UarteInstance, T: TimerInstance> embedded_io::asynch::Write for BufferedUarteTx<'u, 'd, U, T> {
|
|
type WriteFuture<'a> = impl Future<Output = Result<usize, Self::Error>>
|
|
where
|
|
Self: 'a;
|
|
|
|
fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a> {
|
|
self.inner.inner_write(buf)
|
|
}
|
|
|
|
type FlushFuture<'a> = impl Future<Output = Result<(), Self::Error>>
|
|
where
|
|
Self: 'a;
|
|
|
|
fn flush<'a>(&'a mut self) -> Self::FlushFuture<'a> {
|
|
self.inner.inner_flush()
|
|
}
|
|
}
|
|
|
|
impl<'a, U: UarteInstance, T: TimerInstance> Drop for StateInner<'a, U, T> {
|
|
fn drop(&mut self) {
|
|
let r = U::regs();
|
|
|
|
self.timer.stop();
|
|
|
|
r.inten.reset();
|
|
r.events_rxto.reset();
|
|
r.tasks_stoprx.write(|w| unsafe { w.bits(1) });
|
|
r.events_txstopped.reset();
|
|
r.tasks_stoptx.write(|w| unsafe { w.bits(1) });
|
|
|
|
while r.events_txstopped.read().bits() == 0 {}
|
|
while r.events_rxto.read().bits() == 0 {}
|
|
|
|
r.enable.write(|w| w.enable().disabled());
|
|
|
|
gpio::deconfigure_pin(r.psel.rxd.read().bits());
|
|
gpio::deconfigure_pin(r.psel.txd.read().bits());
|
|
gpio::deconfigure_pin(r.psel.rts.read().bits());
|
|
gpio::deconfigure_pin(r.psel.cts.read().bits());
|
|
}
|
|
}
|
|
|
|
impl<'a, U: UarteInstance, T: TimerInstance> PeripheralState for StateInner<'a, U, T> {
|
|
type Interrupt = U::Interrupt;
|
|
fn on_interrupt(&mut self) {
|
|
trace!("irq: start");
|
|
let r = U::regs();
|
|
|
|
loop {
|
|
match self.rx_state {
|
|
RxState::Idle => {
|
|
trace!(" irq_rx: in state idle");
|
|
|
|
let buf = self.rx.push_buf();
|
|
if !buf.is_empty() {
|
|
trace!(" irq_rx: starting {:?}", buf.len());
|
|
self.rx_state = RxState::Receiving;
|
|
|
|
// Set up the DMA read
|
|
r.rxd.ptr.write(|w|
|
|
// The PTR field is a full 32 bits wide and accepts the full range
|
|
// of values.
|
|
unsafe { w.ptr().bits(buf.as_ptr() as u32) });
|
|
r.rxd.maxcnt.write(|w|
|
|
// We're giving it the length of the buffer, so no danger of
|
|
// accessing invalid memory. We have verified that the length of the
|
|
// buffer fits in an `u8`, so the cast to `u8` is also fine.
|
|
//
|
|
// The MAXCNT field is at least 8 bits wide and accepts the full
|
|
// range of values.
|
|
unsafe { w.maxcnt().bits(buf.len() as _) });
|
|
trace!(" irq_rx: buf {:?} {:?}", buf.as_ptr() as u32, buf.len());
|
|
|
|
// Start UARTE Receive transaction
|
|
r.tasks_startrx.write(|w| unsafe { w.bits(1) });
|
|
}
|
|
break;
|
|
}
|
|
RxState::Receiving => {
|
|
trace!(" irq_rx: in state receiving");
|
|
if r.events_endrx.read().bits() != 0 {
|
|
self.timer.stop();
|
|
|
|
let n: usize = r.rxd.amount.read().amount().bits() as usize;
|
|
trace!(" irq_rx: endrx {:?}", n);
|
|
self.rx.push(n);
|
|
|
|
r.events_endrx.reset();
|
|
|
|
self.rx_waker.wake();
|
|
self.rx_state = RxState::Idle;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
loop {
|
|
match self.tx_state {
|
|
TxState::Idle => {
|
|
trace!(" irq_tx: in state Idle");
|
|
let buf = self.tx.pop_buf();
|
|
if !buf.is_empty() {
|
|
trace!(" irq_tx: starting {:?}", buf.len());
|
|
self.tx_state = TxState::Transmitting(buf.len());
|
|
|
|
// Set up the DMA write
|
|
r.txd.ptr.write(|w|
|
|
// The PTR field is a full 32 bits wide and accepts the full range
|
|
// of values.
|
|
unsafe { w.ptr().bits(buf.as_ptr() as u32) });
|
|
r.txd.maxcnt.write(|w|
|
|
// We're giving it the length of the buffer, so no danger of
|
|
// accessing invalid memory. We have verified that the length of the
|
|
// buffer fits in an `u8`, so the cast to `u8` is also fine.
|
|
//
|
|
// The MAXCNT field is 8 bits wide and accepts the full range of
|
|
// values.
|
|
unsafe { w.maxcnt().bits(buf.len() as _) });
|
|
|
|
// Start UARTE Transmit transaction
|
|
r.tasks_starttx.write(|w| unsafe { w.bits(1) });
|
|
}
|
|
break;
|
|
}
|
|
TxState::Transmitting(n) => {
|
|
trace!(" irq_tx: in state Transmitting");
|
|
if r.events_endtx.read().bits() != 0 {
|
|
r.events_endtx.reset();
|
|
|
|
trace!(" irq_tx: endtx {:?}", n);
|
|
self.tx.pop(n);
|
|
self.tx_waker.wake();
|
|
self.tx_state = TxState::Idle;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
trace!("irq: end");
|
|
}
|
|
}
|