768 lines
23 KiB
Rust
768 lines
23 KiB
Rust
use core::future::{poll_fn, Future};
|
|
use core::slice;
|
|
use core::task::Poll;
|
|
|
|
use embassy_cortex_m::interrupt::{Interrupt, InterruptExt};
|
|
use embassy_hal_common::atomic_ring_buffer::RingBuffer;
|
|
use embassy_sync::waitqueue::AtomicWaker;
|
|
|
|
use super::*;
|
|
use crate::RegExt;
|
|
|
|
pub struct State {
|
|
tx_waker: AtomicWaker,
|
|
tx_buf: RingBuffer,
|
|
rx_waker: AtomicWaker,
|
|
rx_buf: RingBuffer,
|
|
}
|
|
|
|
impl State {
|
|
pub const fn new() -> Self {
|
|
Self {
|
|
rx_buf: RingBuffer::new(),
|
|
tx_buf: RingBuffer::new(),
|
|
rx_waker: AtomicWaker::new(),
|
|
tx_waker: AtomicWaker::new(),
|
|
}
|
|
}
|
|
}
|
|
|
|
pub struct BufferedUart<'d, T: Instance> {
|
|
pub(crate) rx: BufferedUartRx<'d, T>,
|
|
pub(crate) tx: BufferedUartTx<'d, T>,
|
|
}
|
|
|
|
pub struct BufferedUartRx<'d, T: Instance> {
|
|
pub(crate) phantom: PhantomData<&'d mut T>,
|
|
}
|
|
|
|
pub struct BufferedUartTx<'d, T: Instance> {
|
|
pub(crate) phantom: PhantomData<&'d mut T>,
|
|
}
|
|
|
|
pub(crate) fn init_buffers<'d, T: Instance + 'd>(
|
|
irq: PeripheralRef<'d, T::Interrupt>,
|
|
tx_buffer: &'d mut [u8],
|
|
rx_buffer: &'d mut [u8],
|
|
) {
|
|
let state = T::state();
|
|
let len = tx_buffer.len();
|
|
unsafe { state.tx_buf.init(tx_buffer.as_mut_ptr(), len) };
|
|
let len = rx_buffer.len();
|
|
unsafe { state.rx_buf.init(rx_buffer.as_mut_ptr(), len) };
|
|
|
|
// From the datasheet:
|
|
// "The transmit interrupt is based on a transition through a level, rather
|
|
// than on the level itself. When the interrupt and the UART is enabled
|
|
// before any data is written to the transmit FIFO the interrupt is not set.
|
|
// The interrupt is only set, after written data leaves the single location
|
|
// of the transmit FIFO and it becomes empty."
|
|
//
|
|
// This means we can leave the interrupt enabled the whole time as long as
|
|
// we clear it after it happens. The downside is that the we manually have
|
|
// to pend the ISR when we want data transmission to start.
|
|
let regs = T::regs();
|
|
unsafe {
|
|
regs.uartimsc().write_set(|w| {
|
|
w.set_rxim(true);
|
|
w.set_rtim(true);
|
|
w.set_txim(true);
|
|
});
|
|
};
|
|
|
|
irq.set_handler(on_interrupt::<T>);
|
|
irq.unpend();
|
|
irq.enable();
|
|
}
|
|
|
|
impl<'d, T: Instance> BufferedUart<'d, T> {
|
|
pub fn new(
|
|
_uart: impl Peripheral<P = T> + 'd,
|
|
irq: impl Peripheral<P = T::Interrupt> + 'd,
|
|
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
|
|
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
|
|
tx_buffer: &'d mut [u8],
|
|
rx_buffer: &'d mut [u8],
|
|
config: Config,
|
|
) -> Self {
|
|
into_ref!(irq, tx, rx);
|
|
|
|
super::Uart::<'d, T, Async>::init(Some(tx.map_into()), Some(rx.map_into()), None, None, config);
|
|
init_buffers::<T>(irq, tx_buffer, rx_buffer);
|
|
|
|
Self {
|
|
rx: BufferedUartRx { phantom: PhantomData },
|
|
tx: BufferedUartTx { phantom: PhantomData },
|
|
}
|
|
}
|
|
|
|
pub fn new_with_rtscts(
|
|
_uart: impl Peripheral<P = T> + 'd,
|
|
irq: impl Peripheral<P = T::Interrupt> + 'd,
|
|
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
|
|
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
|
|
rts: impl Peripheral<P = impl RtsPin<T>> + 'd,
|
|
cts: impl Peripheral<P = impl CtsPin<T>> + 'd,
|
|
tx_buffer: &'d mut [u8],
|
|
rx_buffer: &'d mut [u8],
|
|
config: Config,
|
|
) -> Self {
|
|
into_ref!(irq, tx, rx, cts, rts);
|
|
|
|
super::Uart::<'d, T, Async>::init(
|
|
Some(tx.map_into()),
|
|
Some(rx.map_into()),
|
|
Some(rts.map_into()),
|
|
Some(cts.map_into()),
|
|
config,
|
|
);
|
|
init_buffers::<T>(irq, tx_buffer, rx_buffer);
|
|
|
|
Self {
|
|
rx: BufferedUartRx { phantom: PhantomData },
|
|
tx: BufferedUartTx { phantom: PhantomData },
|
|
}
|
|
}
|
|
|
|
pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<usize, Error> {
|
|
self.tx.blocking_write(buffer)
|
|
}
|
|
|
|
pub fn blocking_flush(&mut self) -> Result<(), Error> {
|
|
self.tx.blocking_flush()
|
|
}
|
|
|
|
pub fn blocking_read(&mut self, buffer: &mut [u8]) -> Result<usize, Error> {
|
|
self.rx.blocking_read(buffer)
|
|
}
|
|
|
|
pub fn split(self) -> (BufferedUartRx<'d, T>, BufferedUartTx<'d, T>) {
|
|
(self.rx, self.tx)
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance> BufferedUartRx<'d, T> {
|
|
pub fn new(
|
|
_uart: impl Peripheral<P = T> + 'd,
|
|
irq: impl Peripheral<P = T::Interrupt> + 'd,
|
|
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
|
|
rx_buffer: &'d mut [u8],
|
|
config: Config,
|
|
) -> Self {
|
|
into_ref!(irq, rx);
|
|
|
|
super::Uart::<'d, T, Async>::init(None, Some(rx.map_into()), None, None, config);
|
|
init_buffers::<T>(irq, &mut [], rx_buffer);
|
|
|
|
Self { phantom: PhantomData }
|
|
}
|
|
|
|
pub fn new_with_rts(
|
|
_uart: impl Peripheral<P = T> + 'd,
|
|
irq: impl Peripheral<P = T::Interrupt> + 'd,
|
|
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
|
|
rts: impl Peripheral<P = impl RtsPin<T>> + 'd,
|
|
rx_buffer: &'d mut [u8],
|
|
config: Config,
|
|
) -> Self {
|
|
into_ref!(irq, rx, rts);
|
|
|
|
super::Uart::<'d, T, Async>::init(None, Some(rx.map_into()), Some(rts.map_into()), None, config);
|
|
init_buffers::<T>(irq, &mut [], rx_buffer);
|
|
|
|
Self { phantom: PhantomData }
|
|
}
|
|
|
|
fn read<'a>(buf: &'a mut [u8]) -> impl Future<Output = Result<usize, Error>> + 'a {
|
|
poll_fn(move |cx| {
|
|
let state = T::state();
|
|
let mut rx_reader = unsafe { state.rx_buf.reader() };
|
|
let n = rx_reader.pop(|data| {
|
|
let n = data.len().min(buf.len());
|
|
buf[..n].copy_from_slice(&data[..n]);
|
|
n
|
|
});
|
|
if n == 0 {
|
|
state.rx_waker.register(cx.waker());
|
|
return Poll::Pending;
|
|
}
|
|
|
|
// (Re-)Enable the interrupt to receive more data in case it was
|
|
// disabled because the buffer was full.
|
|
let regs = T::regs();
|
|
unsafe {
|
|
regs.uartimsc().write_set(|w| {
|
|
w.set_rxim(true);
|
|
w.set_rtim(true);
|
|
});
|
|
}
|
|
|
|
Poll::Ready(Ok(n))
|
|
})
|
|
}
|
|
|
|
pub fn blocking_read(&mut self, buf: &mut [u8]) -> Result<usize, Error> {
|
|
loop {
|
|
let state = T::state();
|
|
let mut rx_reader = unsafe { state.rx_buf.reader() };
|
|
let n = rx_reader.pop(|data| {
|
|
let n = data.len().min(buf.len());
|
|
buf[..n].copy_from_slice(&data[..n]);
|
|
n
|
|
});
|
|
|
|
if n > 0 {
|
|
// (Re-)Enable the interrupt to receive more data in case it was
|
|
// disabled because the buffer was full.
|
|
let regs = T::regs();
|
|
unsafe {
|
|
regs.uartimsc().write_set(|w| {
|
|
w.set_rxim(true);
|
|
w.set_rtim(true);
|
|
});
|
|
}
|
|
|
|
return Ok(n);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn fill_buf<'a>() -> impl Future<Output = Result<&'a [u8], Error>> {
|
|
poll_fn(move |cx| {
|
|
let state = T::state();
|
|
let mut rx_reader = unsafe { state.rx_buf.reader() };
|
|
let (p, n) = rx_reader.pop_buf();
|
|
if n == 0 {
|
|
state.rx_waker.register(cx.waker());
|
|
return Poll::Pending;
|
|
}
|
|
|
|
let buf = unsafe { slice::from_raw_parts(p, n) };
|
|
Poll::Ready(Ok(buf))
|
|
})
|
|
}
|
|
|
|
fn consume(amt: usize) {
|
|
let state = T::state();
|
|
let mut rx_reader = unsafe { state.rx_buf.reader() };
|
|
rx_reader.pop_done(amt);
|
|
|
|
// (Re-)Enable the interrupt to receive more data in case it was
|
|
// disabled because the buffer was full.
|
|
let regs = T::regs();
|
|
unsafe {
|
|
regs.uartimsc().write_set(|w| {
|
|
w.set_rxim(true);
|
|
w.set_rtim(true);
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance> BufferedUartTx<'d, T> {
|
|
pub fn new(
|
|
_uart: impl Peripheral<P = T> + 'd,
|
|
irq: impl Peripheral<P = T::Interrupt> + 'd,
|
|
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
|
|
tx_buffer: &'d mut [u8],
|
|
config: Config,
|
|
) -> Self {
|
|
into_ref!(irq, tx);
|
|
|
|
super::Uart::<'d, T, Async>::init(Some(tx.map_into()), None, None, None, config);
|
|
init_buffers::<T>(irq, tx_buffer, &mut []);
|
|
|
|
Self { phantom: PhantomData }
|
|
}
|
|
|
|
pub fn new_with_cts(
|
|
_uart: impl Peripheral<P = T> + 'd,
|
|
irq: impl Peripheral<P = T::Interrupt> + 'd,
|
|
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
|
|
cts: impl Peripheral<P = impl CtsPin<T>> + 'd,
|
|
tx_buffer: &'d mut [u8],
|
|
config: Config,
|
|
) -> Self {
|
|
into_ref!(irq, tx, cts);
|
|
|
|
super::Uart::<'d, T, Async>::init(Some(tx.map_into()), None, None, Some(cts.map_into()), config);
|
|
init_buffers::<T>(irq, tx_buffer, &mut []);
|
|
|
|
Self { phantom: PhantomData }
|
|
}
|
|
|
|
fn write<'a>(buf: &'a [u8]) -> impl Future<Output = Result<usize, Error>> + 'a {
|
|
poll_fn(move |cx| {
|
|
let state = T::state();
|
|
let mut tx_writer = unsafe { state.tx_buf.writer() };
|
|
let n = tx_writer.push(|data| {
|
|
let n = data.len().min(buf.len());
|
|
data[..n].copy_from_slice(&buf[..n]);
|
|
n
|
|
});
|
|
if n == 0 {
|
|
state.tx_waker.register(cx.waker());
|
|
return Poll::Pending;
|
|
}
|
|
|
|
// The TX interrupt only triggers when the there was data in the
|
|
// FIFO and the number of bytes drops below a threshold. When the
|
|
// FIFO was empty we have to manually pend the interrupt to shovel
|
|
// TX data from the buffer into the FIFO.
|
|
unsafe { T::Interrupt::steal() }.pend();
|
|
Poll::Ready(Ok(n))
|
|
})
|
|
}
|
|
|
|
fn flush() -> impl Future<Output = Result<(), Error>> {
|
|
poll_fn(move |cx| {
|
|
let state = T::state();
|
|
if !state.tx_buf.is_empty() {
|
|
state.tx_waker.register(cx.waker());
|
|
return Poll::Pending;
|
|
}
|
|
|
|
Poll::Ready(Ok(()))
|
|
})
|
|
}
|
|
|
|
pub fn blocking_write(&mut self, buf: &[u8]) -> Result<usize, Error> {
|
|
loop {
|
|
let state = T::state();
|
|
let mut tx_writer = unsafe { state.tx_buf.writer() };
|
|
let n = tx_writer.push(|data| {
|
|
let n = data.len().min(buf.len());
|
|
data[..n].copy_from_slice(&buf[..n]);
|
|
n
|
|
});
|
|
|
|
if n != 0 {
|
|
// The TX interrupt only triggers when the there was data in the
|
|
// FIFO and the number of bytes drops below a threshold. When the
|
|
// FIFO was empty we have to manually pend the interrupt to shovel
|
|
// TX data from the buffer into the FIFO.
|
|
unsafe { T::Interrupt::steal() }.pend();
|
|
return Ok(n);
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn blocking_flush(&mut self) -> Result<(), Error> {
|
|
loop {
|
|
let state = T::state();
|
|
if state.tx_buf.is_empty() {
|
|
return Ok(());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance> Drop for BufferedUartRx<'d, T> {
|
|
fn drop(&mut self) {
|
|
let state = T::state();
|
|
unsafe {
|
|
state.rx_buf.deinit();
|
|
|
|
// TX is inactive if the the buffer is not available.
|
|
// We can now unregister the interrupt handler
|
|
if state.tx_buf.len() == 0 {
|
|
T::Interrupt::steal().disable();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance> Drop for BufferedUartTx<'d, T> {
|
|
fn drop(&mut self) {
|
|
let state = T::state();
|
|
unsafe {
|
|
state.tx_buf.deinit();
|
|
|
|
// RX is inactive if the the buffer is not available.
|
|
// We can now unregister the interrupt handler
|
|
if state.rx_buf.len() == 0 {
|
|
T::Interrupt::steal().disable();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub(crate) unsafe fn on_interrupt<T: Instance>(_: *mut ()) {
|
|
let r = T::regs();
|
|
let s = T::state();
|
|
|
|
unsafe {
|
|
// Clear TX and error interrupt flags
|
|
// RX interrupt flags are cleared by reading from the FIFO.
|
|
let ris = r.uartris().read();
|
|
r.uarticr().write(|w| {
|
|
w.set_txic(ris.txris());
|
|
w.set_feic(ris.feris());
|
|
w.set_peic(ris.peris());
|
|
w.set_beic(ris.beris());
|
|
w.set_oeic(ris.oeris());
|
|
});
|
|
|
|
trace!("on_interrupt ris={:#X}", ris.0);
|
|
|
|
// Errors
|
|
if ris.feris() {
|
|
warn!("Framing error");
|
|
}
|
|
if ris.peris() {
|
|
warn!("Parity error");
|
|
}
|
|
if ris.beris() {
|
|
warn!("Break error");
|
|
}
|
|
if ris.oeris() {
|
|
warn!("Overrun error");
|
|
}
|
|
|
|
// RX
|
|
let mut rx_writer = s.rx_buf.writer();
|
|
let rx_buf = rx_writer.push_slice();
|
|
let mut n_read = 0;
|
|
for rx_byte in rx_buf {
|
|
if r.uartfr().read().rxfe() {
|
|
break;
|
|
}
|
|
*rx_byte = r.uartdr().read().data();
|
|
n_read += 1;
|
|
}
|
|
if n_read > 0 {
|
|
rx_writer.push_done(n_read);
|
|
s.rx_waker.wake();
|
|
}
|
|
// Disable any further RX interrupts when the buffer becomes full.
|
|
if s.rx_buf.is_full() {
|
|
r.uartimsc().write_clear(|w| {
|
|
w.set_rxim(true);
|
|
w.set_rtim(true);
|
|
});
|
|
}
|
|
|
|
// TX
|
|
let mut tx_reader = s.tx_buf.reader();
|
|
let tx_buf = tx_reader.pop_slice();
|
|
let mut n_written = 0;
|
|
for tx_byte in tx_buf.iter_mut() {
|
|
if r.uartfr().read().txff() {
|
|
break;
|
|
}
|
|
r.uartdr().write(|w| w.set_data(*tx_byte));
|
|
n_written += 1;
|
|
}
|
|
if n_written > 0 {
|
|
tx_reader.pop_done(n_written);
|
|
s.tx_waker.wake();
|
|
}
|
|
// The TX interrupt only triggers once when the FIFO threshold is
|
|
// crossed. No need to disable it when the buffer becomes empty
|
|
// as it does re-trigger anymore once we have cleared it.
|
|
}
|
|
}
|
|
|
|
impl embedded_io::Error for Error {
|
|
fn kind(&self) -> embedded_io::ErrorKind {
|
|
embedded_io::ErrorKind::Other
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance> embedded_io::Io for BufferedUart<'d, T> {
|
|
type Error = Error;
|
|
}
|
|
|
|
impl<'d, T: Instance> embedded_io::Io for BufferedUartRx<'d, T> {
|
|
type Error = Error;
|
|
}
|
|
|
|
impl<'d, T: Instance> embedded_io::Io for BufferedUartTx<'d, T> {
|
|
type Error = Error;
|
|
}
|
|
|
|
impl<'d, T: Instance + 'd> embedded_io::asynch::Read for BufferedUart<'d, T> {
|
|
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
|
|
BufferedUartRx::<'d, T>::read(buf).await
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance + 'd> embedded_io::asynch::Read for BufferedUartRx<'d, T> {
|
|
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
|
|
Self::read(buf).await
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance + 'd> embedded_io::asynch::BufRead for BufferedUart<'d, T> {
|
|
async fn fill_buf(&mut self) -> Result<&[u8], Self::Error> {
|
|
BufferedUartRx::<'d, T>::fill_buf().await
|
|
}
|
|
|
|
fn consume(&mut self, amt: usize) {
|
|
BufferedUartRx::<'d, T>::consume(amt)
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance + 'd> embedded_io::asynch::BufRead for BufferedUartRx<'d, T> {
|
|
async fn fill_buf(&mut self) -> Result<&[u8], Self::Error> {
|
|
Self::fill_buf().await
|
|
}
|
|
|
|
fn consume(&mut self, amt: usize) {
|
|
Self::consume(amt)
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance + 'd> embedded_io::asynch::Write for BufferedUart<'d, T> {
|
|
async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
|
|
BufferedUartTx::<'d, T>::write(buf).await
|
|
}
|
|
|
|
async fn flush(&mut self) -> Result<(), Self::Error> {
|
|
BufferedUartTx::<'d, T>::flush().await
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance + 'd> embedded_io::asynch::Write for BufferedUartTx<'d, T> {
|
|
async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
|
|
Self::write(buf).await
|
|
}
|
|
|
|
async fn flush(&mut self) -> Result<(), Self::Error> {
|
|
Self::flush().await
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance + 'd> embedded_io::blocking::Read for BufferedUart<'d, T> {
|
|
fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
|
|
self.rx.blocking_read(buf)
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance + 'd> embedded_io::blocking::Read for BufferedUartRx<'d, T> {
|
|
fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
|
|
self.blocking_read(buf)
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance + 'd> embedded_io::blocking::Write for BufferedUart<'d, T> {
|
|
fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
|
|
self.tx.blocking_write(buf)
|
|
}
|
|
|
|
fn flush(&mut self) -> Result<(), Self::Error> {
|
|
self.tx.blocking_flush()
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance + 'd> embedded_io::blocking::Write for BufferedUartTx<'d, T> {
|
|
fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
|
|
self.blocking_write(buf)
|
|
}
|
|
|
|
fn flush(&mut self) -> Result<(), Self::Error> {
|
|
self.blocking_flush()
|
|
}
|
|
}
|
|
|
|
mod eh02 {
|
|
use super::*;
|
|
|
|
impl<'d, T: Instance> embedded_hal_02::serial::Read<u8> for BufferedUartRx<'d, T> {
|
|
type Error = Error;
|
|
|
|
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
|
|
let r = T::regs();
|
|
unsafe {
|
|
if r.uartfr().read().rxfe() {
|
|
return Err(nb::Error::WouldBlock);
|
|
}
|
|
|
|
let dr = r.uartdr().read();
|
|
|
|
if dr.oe() {
|
|
Err(nb::Error::Other(Error::Overrun))
|
|
} else if dr.be() {
|
|
Err(nb::Error::Other(Error::Break))
|
|
} else if dr.pe() {
|
|
Err(nb::Error::Other(Error::Parity))
|
|
} else if dr.fe() {
|
|
Err(nb::Error::Other(Error::Framing))
|
|
} else {
|
|
Ok(dr.data())
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance> embedded_hal_02::blocking::serial::Write<u8> for BufferedUartTx<'d, T> {
|
|
type Error = Error;
|
|
|
|
fn bwrite_all(&mut self, mut buffer: &[u8]) -> Result<(), Self::Error> {
|
|
while !buffer.is_empty() {
|
|
match self.blocking_write(buffer) {
|
|
Ok(0) => panic!("zero-length write."),
|
|
Ok(n) => buffer = &buffer[n..],
|
|
Err(e) => return Err(e),
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn bflush(&mut self) -> Result<(), Self::Error> {
|
|
self.blocking_flush()
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance> embedded_hal_02::serial::Read<u8> for BufferedUart<'d, T> {
|
|
type Error = Error;
|
|
|
|
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
|
|
embedded_hal_02::serial::Read::read(&mut self.rx)
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance> embedded_hal_02::blocking::serial::Write<u8> for BufferedUart<'d, T> {
|
|
type Error = Error;
|
|
|
|
fn bwrite_all(&mut self, mut buffer: &[u8]) -> Result<(), Self::Error> {
|
|
while !buffer.is_empty() {
|
|
match self.blocking_write(buffer) {
|
|
Ok(0) => panic!("zero-length write."),
|
|
Ok(n) => buffer = &buffer[n..],
|
|
Err(e) => return Err(e),
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn bflush(&mut self) -> Result<(), Self::Error> {
|
|
self.blocking_flush()
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "unstable-traits")]
|
|
mod eh1 {
|
|
use super::*;
|
|
|
|
impl<'d, T: Instance> embedded_hal_1::serial::ErrorType for BufferedUart<'d, T> {
|
|
type Error = Error;
|
|
}
|
|
|
|
impl<'d, T: Instance> embedded_hal_1::serial::ErrorType for BufferedUartTx<'d, T> {
|
|
type Error = Error;
|
|
}
|
|
|
|
impl<'d, T: Instance> embedded_hal_1::serial::ErrorType for BufferedUartRx<'d, T> {
|
|
type Error = Error;
|
|
}
|
|
|
|
impl<'d, T: Instance> embedded_hal_nb::serial::Read for BufferedUartRx<'d, T> {
|
|
fn read(&mut self) -> nb::Result<u8, Self::Error> {
|
|
embedded_hal_02::serial::Read::read(self)
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance> embedded_hal_1::serial::Write for BufferedUartTx<'d, T> {
|
|
fn write(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
|
|
self.blocking_write(buffer).map(drop)
|
|
}
|
|
|
|
fn flush(&mut self) -> Result<(), Self::Error> {
|
|
self.blocking_flush()
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance> embedded_hal_nb::serial::Write for BufferedUartTx<'d, T> {
|
|
fn write(&mut self, char: u8) -> nb::Result<(), Self::Error> {
|
|
self.blocking_write(&[char]).map(drop).map_err(nb::Error::Other)
|
|
}
|
|
|
|
fn flush(&mut self) -> nb::Result<(), Self::Error> {
|
|
self.blocking_flush().map_err(nb::Error::Other)
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance> embedded_hal_nb::serial::Read for BufferedUart<'d, T> {
|
|
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
|
|
embedded_hal_02::serial::Read::read(&mut self.rx)
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance> embedded_hal_1::serial::Write for BufferedUart<'d, T> {
|
|
fn write(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
|
|
self.blocking_write(buffer).map(drop)
|
|
}
|
|
|
|
fn flush(&mut self) -> Result<(), Self::Error> {
|
|
self.blocking_flush()
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance> embedded_hal_nb::serial::Write for BufferedUart<'d, T> {
|
|
fn write(&mut self, char: u8) -> nb::Result<(), Self::Error> {
|
|
self.blocking_write(&[char]).map(drop).map_err(nb::Error::Other)
|
|
}
|
|
|
|
fn flush(&mut self) -> nb::Result<(), Self::Error> {
|
|
self.blocking_flush().map_err(nb::Error::Other)
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(all(
|
|
feature = "unstable-traits",
|
|
feature = "nightly",
|
|
feature = "_todo_embedded_hal_serial"
|
|
))]
|
|
mod eha {
|
|
use core::future::Future;
|
|
|
|
use super::*;
|
|
|
|
impl<'d, T: Instance> embedded_hal_async::serial::Write for BufferedUartTx<'d, T> {
|
|
type WriteFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
|
|
|
|
fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a> {
|
|
Self::write(buf)
|
|
}
|
|
|
|
type FlushFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
|
|
|
|
fn flush<'a>(&'a mut self) -> Self::FlushFuture<'a> {
|
|
Self::flush()
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance> embedded_hal_async::serial::Read for BufferedUartRx<'d, T> {
|
|
type ReadFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
|
|
|
|
fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a> {
|
|
Self::read(buf)
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance> embedded_hal_async::serial::Write for BufferedUart<'d, T> {
|
|
type WriteFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
|
|
|
|
fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a> {
|
|
BufferedUartTx::<'d, T>::write(buf)
|
|
}
|
|
|
|
type FlushFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
|
|
|
|
fn flush<'a>(&'a mut self) -> Self::FlushFuture<'a> {
|
|
BufferedUartTx::<'d, T>::flush()
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance> embedded_hal_async::serial::Read for BufferedUart<'d, T> {
|
|
type ReadFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
|
|
|
|
fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a> {
|
|
BufferedUartRx::<'d, T>::read(buf)
|
|
}
|
|
}
|
|
}
|