embassy/embassy-nrf/src/uarte.rs
2021-10-26 17:40:07 +02:00

531 lines
17 KiB
Rust

#![macro_use]
//! Async UART
use core::future::Future;
use core::marker::PhantomData;
use core::sync::atomic::{compiler_fence, Ordering};
use core::task::Poll;
use embassy::interrupt::InterruptExt;
use embassy::traits::uart::{Error as TraitError, Read, ReadUntilIdle, Write};
use embassy::util::Unborrow;
use embassy_hal_common::drop::OnDrop;
use embassy_hal_common::unborrow;
use futures::future::poll_fn;
use crate::chip::EASY_DMA_SIZE;
use crate::gpio::sealed::Pin as _;
use crate::gpio::{self, OptionalPin as GpioOptionalPin, Pin as GpioPin};
use crate::interrupt::Interrupt;
use crate::pac;
use crate::ppi::{AnyConfigurableChannel, ConfigurableChannel, Event, Ppi, Task};
use crate::timer::Instance as TimerInstance;
use crate::timer::{Frequency, Timer};
// Re-export SVD variants to allow user to directly set values.
pub use pac::uarte0::{baudrate::BAUDRATE_A as Baudrate, config::PARITY_A as Parity};
#[non_exhaustive]
pub struct Config {
pub parity: Parity,
pub baudrate: Baudrate,
}
impl Default for Config {
fn default() -> Self {
Self {
parity: Parity::EXCLUDED,
baudrate: Baudrate::BAUD115200,
}
}
}
/// Interface to the UARTE peripheral
pub struct Uarte<'d, T: Instance> {
phantom: PhantomData<&'d mut T>,
}
impl<'d, T: Instance> Uarte<'d, T> {
/// Creates the interface to a UARTE instance.
/// Sets the baud rate, parity and assigns the pins to the UARTE peripheral.
///
/// # Safety
///
/// The returned API is safe unless you use `mem::forget` (or similar safe mechanisms)
/// on stack allocated buffers which which have been passed to [`send()`](Uarte::send)
/// or [`receive`](Uarte::receive).
#[allow(unused_unsafe)]
pub unsafe fn new(
_uarte: impl Unborrow<Target = T> + 'd,
irq: impl Unborrow<Target = T::Interrupt> + 'd,
rxd: impl Unborrow<Target = impl GpioPin> + 'd,
txd: impl Unborrow<Target = impl GpioPin> + 'd,
cts: impl Unborrow<Target = impl GpioOptionalPin> + 'd,
rts: impl Unborrow<Target = impl GpioOptionalPin> + 'd,
config: Config,
) -> Self {
unborrow!(irq, rxd, txd, cts, rts);
let r = T::regs();
rxd.conf().write(|w| w.input().connect().drive().h0h1());
r.psel.rxd.write(|w| unsafe { w.bits(rxd.psel_bits()) });
txd.set_high();
txd.conf().write(|w| w.dir().output().drive().h0h1());
r.psel.txd.write(|w| unsafe { w.bits(txd.psel_bits()) });
if let Some(pin) = rts.pin_mut() {
pin.set_high();
pin.conf().write(|w| w.dir().output().drive().h0h1());
}
r.psel.cts.write(|w| unsafe { w.bits(cts.psel_bits()) });
if let Some(pin) = cts.pin_mut() {
pin.conf().write(|w| w.input().connect().drive().h0h1());
}
r.psel.rts.write(|w| unsafe { w.bits(rts.psel_bits()) });
// Configure
let hardware_flow_control = match (rts.pin().is_some(), cts.pin().is_some()) {
(false, false) => false,
(true, true) => true,
_ => panic!("RTS and CTS pins must be either both set or none set."),
};
r.config.write(|w| {
w.hwfc().bit(hardware_flow_control);
w.parity().variant(config.parity);
w
});
r.baudrate.write(|w| w.baudrate().variant(config.baudrate));
// Disable all interrupts
r.intenclr.write(|w| unsafe { w.bits(0xFFFF_FFFF) });
// Reset rxstarted, txstarted. These are used by drop to know whether a transfer was
// stopped midway or not.
r.events_rxstarted.reset();
r.events_txstarted.reset();
irq.set_handler(Self::on_interrupt);
irq.unpend();
irq.enable();
// Enable
Self::apply_workaround_for_enable_anomaly();
r.enable.write(|w| w.enable().enabled());
Self {
phantom: PhantomData,
}
}
#[cfg(not(any(feature = "_nrf9160", feature = "nrf5340")))]
fn apply_workaround_for_enable_anomaly() {
// Do nothing
}
#[cfg(any(feature = "_nrf9160", feature = "nrf5340"))]
fn apply_workaround_for_enable_anomaly() {
use core::ops::Deref;
let r = T::regs();
// Apply workaround for anomalies:
// - nRF9160 - anomaly 23
// - nRF5340 - anomaly 44
let rxenable_reg: *const u32 = ((r.deref() as *const _ as usize) + 0x564) as *const u32;
let txenable_reg: *const u32 = ((r.deref() as *const _ as usize) + 0x568) as *const u32;
// NB Safety: This is taken from Nordic's driver -
// https://github.com/NordicSemiconductor/nrfx/blob/master/drivers/src/nrfx_uarte.c#L197
if unsafe { core::ptr::read_volatile(txenable_reg) } == 1 {
r.tasks_stoptx.write(|w| unsafe { w.bits(1) });
}
// NB Safety: This is taken from Nordic's driver -
// https://github.com/NordicSemiconductor/nrfx/blob/master/drivers/src/nrfx_uarte.c#L197
if unsafe { core::ptr::read_volatile(rxenable_reg) } == 1 {
r.enable.write(|w| w.enable().enabled());
r.tasks_stoprx.write(|w| unsafe { w.bits(1) });
let mut workaround_succeded = false;
// The UARTE is able to receive up to four bytes after the STOPRX task has been triggered.
// On lowest supported baud rate (1200 baud), with parity bit and two stop bits configured
// (resulting in 12 bits per data byte sent), this may take up to 40 ms.
for _ in 0..40000 {
// NB Safety: This is taken from Nordic's driver -
// https://github.com/NordicSemiconductor/nrfx/blob/master/drivers/src/nrfx_uarte.c#L197
if unsafe { core::ptr::read_volatile(rxenable_reg) } == 0 {
workaround_succeded = true;
break;
} else {
// Need to sleep for 1us here
}
}
if !workaround_succeded {
panic!("Failed to apply workaround for UART");
}
let errors = r.errorsrc.read().bits();
// NB Safety: safe to write back the bits we just read to clear them
r.errorsrc.write(|w| unsafe { w.bits(errors) });
r.enable.write(|w| w.enable().disabled());
}
}
fn on_interrupt(_: *mut ()) {
let r = T::regs();
let s = T::state();
if r.events_endrx.read().bits() != 0 {
s.endrx_waker.wake();
r.intenclr.write(|w| w.endrx().clear());
}
if r.events_endtx.read().bits() != 0 {
s.endtx_waker.wake();
r.intenclr.write(|w| w.endtx().clear());
}
}
}
impl<'a, T: Instance> Drop for Uarte<'a, T> {
fn drop(&mut self) {
info!("uarte drop");
let r = T::regs();
let did_stoprx = r.events_rxstarted.read().bits() != 0;
let did_stoptx = r.events_txstarted.read().bits() != 0;
info!("did_stoprx {} did_stoptx {}", did_stoprx, did_stoptx);
// Wait for rxto or txstopped, if needed.
while (did_stoprx && r.events_rxto.read().bits() == 0)
|| (did_stoptx && r.events_txstopped.read().bits() == 0)
{}
// Finally we can disable!
r.enable.write(|w| w.enable().disabled());
gpio::deconfigure_pin(r.psel.rxd.read().bits());
gpio::deconfigure_pin(r.psel.txd.read().bits());
gpio::deconfigure_pin(r.psel.rts.read().bits());
gpio::deconfigure_pin(r.psel.cts.read().bits());
info!("uarte drop: done");
}
}
impl<'d, T: Instance> Read for Uarte<'d, T> {
#[rustfmt::skip]
type ReadFuture<'a> where Self: 'a = impl Future<Output = Result<(), TraitError>> + 'a;
fn read<'a>(&'a mut self, rx_buffer: &'a mut [u8]) -> Self::ReadFuture<'a> {
async move {
let ptr = rx_buffer.as_ptr();
let len = rx_buffer.len();
assert!(len <= EASY_DMA_SIZE);
let r = T::regs();
let s = T::state();
let drop = OnDrop::new(move || {
info!("read drop: stopping");
r.intenclr.write(|w| w.endrx().clear());
r.events_rxto.reset();
r.tasks_stoprx.write(|w| unsafe { w.bits(1) });
while r.events_endrx.read().bits() == 0 {}
info!("read drop: stopped");
});
r.rxd.ptr.write(|w| unsafe { w.ptr().bits(ptr as u32) });
r.rxd.maxcnt.write(|w| unsafe { w.maxcnt().bits(len as _) });
r.events_endrx.reset();
r.intenset.write(|w| w.endrx().set());
compiler_fence(Ordering::SeqCst);
trace!("startrx");
r.tasks_startrx.write(|w| unsafe { w.bits(1) });
poll_fn(|cx| {
s.endrx_waker.register(cx.waker());
if r.events_endrx.read().bits() != 0 {
return Poll::Ready(());
}
Poll::Pending
})
.await;
compiler_fence(Ordering::SeqCst);
r.events_rxstarted.reset();
drop.defuse();
Ok(())
}
}
}
impl<'d, T: Instance> Write for Uarte<'d, T> {
#[rustfmt::skip]
type WriteFuture<'a> where Self: 'a = impl Future<Output = Result<(), TraitError>> + 'a;
fn write<'a>(&'a mut self, tx_buffer: &'a [u8]) -> Self::WriteFuture<'a> {
async move {
let ptr = tx_buffer.as_ptr();
let len = tx_buffer.len();
assert!(len <= EASY_DMA_SIZE);
// TODO: panic if buffer is not in SRAM
let r = T::regs();
let s = T::state();
let drop = OnDrop::new(move || {
info!("write drop: stopping");
r.intenclr.write(|w| w.endtx().clear());
r.events_txstopped.reset();
r.tasks_stoptx.write(|w| unsafe { w.bits(1) });
// TX is stopped almost instantly, spinning is fine.
while r.events_endtx.read().bits() == 0 {}
info!("write drop: stopped");
});
r.txd.ptr.write(|w| unsafe { w.ptr().bits(ptr as u32) });
r.txd.maxcnt.write(|w| unsafe { w.maxcnt().bits(len as _) });
r.events_endtx.reset();
r.intenset.write(|w| w.endtx().set());
compiler_fence(Ordering::SeqCst);
trace!("starttx");
r.tasks_starttx.write(|w| unsafe { w.bits(1) });
poll_fn(|cx| {
s.endtx_waker.register(cx.waker());
if r.events_endtx.read().bits() != 0 {
return Poll::Ready(());
}
Poll::Pending
})
.await;
compiler_fence(Ordering::SeqCst);
r.events_txstarted.reset();
drop.defuse();
Ok(())
}
}
}
/// Interface to an UARTE peripheral that uses an additional timer and two PPI channels,
/// allowing it to implement the ReadUntilIdle trait.
pub struct UarteWithIdle<'d, U: Instance, T: TimerInstance> {
uarte: Uarte<'d, U>,
timer: Timer<'d, T>,
ppi_ch1: Ppi<'d, AnyConfigurableChannel, 1, 2>,
_ppi_ch2: Ppi<'d, AnyConfigurableChannel, 1, 1>,
}
impl<'d, U: Instance, T: TimerInstance> UarteWithIdle<'d, U, T> {
/// Creates the interface to a UARTE instance.
/// Sets the baud rate, parity and assigns the pins to the UARTE peripheral.
///
/// # Safety
///
/// The returned API is safe unless you use `mem::forget` (or similar safe mechanisms)
/// on stack allocated buffers which which have been passed to [`send()`](Uarte::send)
/// or [`receive`](Uarte::receive).
#[allow(unused_unsafe)]
pub unsafe fn new(
uarte: impl Unborrow<Target = U> + 'd,
timer: impl Unborrow<Target = T> + 'd,
ppi_ch1: impl Unborrow<Target = impl ConfigurableChannel + 'd> + 'd,
ppi_ch2: impl Unborrow<Target = impl ConfigurableChannel + 'd> + 'd,
irq: impl Unborrow<Target = U::Interrupt> + 'd,
rxd: impl Unborrow<Target = impl GpioPin> + 'd,
txd: impl Unborrow<Target = impl GpioPin> + 'd,
cts: impl Unborrow<Target = impl GpioOptionalPin> + 'd,
rts: impl Unborrow<Target = impl GpioOptionalPin> + 'd,
config: Config,
) -> Self {
let baudrate = config.baudrate;
let uarte = Uarte::new(uarte, irq, rxd, txd, cts, rts, config);
let mut timer = Timer::new(timer);
unborrow!(ppi_ch1, ppi_ch2);
let r = U::regs();
// BAUDRATE register values are `baudrate * 2^32 / 16000000`
// source: https://devzone.nordicsemi.com/f/nordic-q-a/391/uart-baudrate-register-values
//
// We want to stop RX if line is idle for 2 bytes worth of time
// That is 20 bits (each byte is 1 start bit + 8 data bits + 1 stop bit)
// This gives us the amount of 16M ticks for 20 bits.
let timeout = 0x8000_0000 / (baudrate as u32 / 40);
timer.set_frequency(Frequency::F16MHz);
timer.cc(0).write(timeout);
timer.cc(0).short_compare_clear();
timer.cc(0).short_compare_stop();
let mut ppi_ch1 = Ppi::new_one_to_two(
ppi_ch1.degrade(),
Event::from_reg(&r.events_rxdrdy),
timer.task_clear(),
timer.task_start(),
);
ppi_ch1.enable();
let mut ppi_ch2 = Ppi::new_one_to_one(
ppi_ch2.degrade(),
timer.cc(0).event_compare(),
Task::from_reg(&r.tasks_stoprx),
);
ppi_ch2.enable();
Self {
uarte,
timer,
ppi_ch1: ppi_ch1,
_ppi_ch2: ppi_ch2,
}
}
}
impl<'d, U: Instance, T: TimerInstance> ReadUntilIdle for UarteWithIdle<'d, U, T> {
#[rustfmt::skip]
type ReadUntilIdleFuture<'a> where Self: 'a = impl Future<Output = Result<usize, TraitError>> + 'a;
fn read_until_idle<'a>(&'a mut self, rx_buffer: &'a mut [u8]) -> Self::ReadUntilIdleFuture<'a> {
async move {
let ptr = rx_buffer.as_ptr();
let len = rx_buffer.len();
assert!(len <= EASY_DMA_SIZE);
let r = U::regs();
let s = U::state();
let drop = OnDrop::new(|| {
info!("read drop: stopping");
self.timer.stop();
r.intenclr.write(|w| w.endrx().clear());
r.events_rxto.reset();
r.tasks_stoprx.write(|w| unsafe { w.bits(1) });
while r.events_endrx.read().bits() == 0 {}
info!("read drop: stopped");
});
r.rxd.ptr.write(|w| unsafe { w.ptr().bits(ptr as u32) });
r.rxd.maxcnt.write(|w| unsafe { w.maxcnt().bits(len as _) });
r.events_endrx.reset();
r.intenset.write(|w| w.endrx().set());
compiler_fence(Ordering::SeqCst);
trace!("startrx");
r.tasks_startrx.write(|w| unsafe { w.bits(1) });
poll_fn(|cx| {
s.endrx_waker.register(cx.waker());
if r.events_endrx.read().bits() != 0 {
return Poll::Ready(());
}
Poll::Pending
})
.await;
compiler_fence(Ordering::SeqCst);
let n = r.rxd.amount.read().amount().bits() as usize;
// Stop timer
self.timer.stop();
r.events_rxstarted.reset();
drop.defuse();
Ok(n)
}
}
}
impl<'d, U: Instance, T: TimerInstance> Read for UarteWithIdle<'d, U, T> {
#[rustfmt::skip]
type ReadFuture<'a> where Self: 'a = impl Future<Output = Result<(), TraitError>> + 'a;
fn read<'a>(&'a mut self, rx_buffer: &'a mut [u8]) -> Self::ReadFuture<'a> {
async move {
self.ppi_ch1.disable();
let result = self.uarte.read(rx_buffer).await;
self.ppi_ch1.enable();
result
}
}
}
impl<'d, U: Instance, T: TimerInstance> Write for UarteWithIdle<'d, U, T> {
#[rustfmt::skip]
type WriteFuture<'a> where Self: 'a = impl Future<Output = Result<(), TraitError>> + 'a;
fn write<'a>(&'a mut self, tx_buffer: &'a [u8]) -> Self::WriteFuture<'a> {
self.uarte.write(tx_buffer)
}
}
pub(crate) mod sealed {
use embassy::waitqueue::AtomicWaker;
use super::*;
pub struct State {
pub endrx_waker: AtomicWaker,
pub endtx_waker: AtomicWaker,
}
impl State {
pub const fn new() -> Self {
Self {
endrx_waker: AtomicWaker::new(),
endtx_waker: AtomicWaker::new(),
}
}
}
pub trait Instance {
fn regs() -> &'static pac::uarte0::RegisterBlock;
fn state() -> &'static State;
}
}
pub trait Instance: Unborrow<Target = Self> + sealed::Instance + 'static + Send {
type Interrupt: Interrupt;
}
macro_rules! impl_uarte {
($type:ident, $pac_type:ident, $irq:ident) => {
impl crate::uarte::sealed::Instance for peripherals::$type {
fn regs() -> &'static pac::uarte0::RegisterBlock {
unsafe { &*pac::$pac_type::ptr() }
}
fn state() -> &'static crate::uarte::sealed::State {
static STATE: crate::uarte::sealed::State = crate::uarte::sealed::State::new();
&STATE
}
}
impl crate::uarte::Instance for peripherals::$type {
type Interrupt = crate::interrupt::$irq;
}
};
}