515 lines
13 KiB
Rust
515 lines
13 KiB
Rust
use stm32_metapac::flash::vals::Latency;
|
|
use stm32_metapac::rcc::vals::{Hpre, Pllsrc, Ppre, Sw};
|
|
use stm32_metapac::FLASH;
|
|
|
|
use crate::pac::{PWR, RCC};
|
|
use crate::rcc::{set_freqs, Clocks};
|
|
use crate::time::Hertz;
|
|
|
|
/// HSI speed
|
|
pub const HSI_FREQ: Hertz = Hertz(16_000_000);
|
|
|
|
/// LSI speed
|
|
pub const LSI_FREQ: Hertz = Hertz(32_000);
|
|
|
|
/// System clock mux source
|
|
#[derive(Clone, Copy)]
|
|
pub enum ClockSrc {
|
|
HSE(Hertz),
|
|
HSI16,
|
|
PLL,
|
|
}
|
|
|
|
/// AHB prescaler
|
|
#[derive(Clone, Copy, PartialEq)]
|
|
pub enum AHBPrescaler {
|
|
NotDivided,
|
|
Div2,
|
|
Div4,
|
|
Div8,
|
|
Div16,
|
|
Div64,
|
|
Div128,
|
|
Div256,
|
|
Div512,
|
|
}
|
|
|
|
/// APB prescaler
|
|
#[derive(Clone, Copy)]
|
|
pub enum APBPrescaler {
|
|
NotDivided,
|
|
Div2,
|
|
Div4,
|
|
Div8,
|
|
Div16,
|
|
}
|
|
|
|
/// PLL clock input source
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub enum PllSrc {
|
|
HSI16,
|
|
HSE(Hertz),
|
|
}
|
|
|
|
impl Into<Pllsrc> for PllSrc {
|
|
fn into(self) -> Pllsrc {
|
|
match self {
|
|
PllSrc::HSE(..) => Pllsrc::HSE,
|
|
PllSrc::HSI16 => Pllsrc::HSI16,
|
|
}
|
|
}
|
|
}
|
|
|
|
seq_macro::seq!(P in 2..=31 {
|
|
/// Output divider for the PLL P output.
|
|
#[derive(Clone, Copy)]
|
|
pub enum PllP {
|
|
// Note: If PLL P is set to 0 the PLLP bit controls the output division. There does not seem to
|
|
// a good reason to do this so the API does not support it.
|
|
// Div1 is invalid
|
|
#(
|
|
Div~P,
|
|
)*
|
|
}
|
|
|
|
impl From<PllP> for u8 {
|
|
/// Returns the register value for the P output divider.
|
|
fn from(val: PllP) -> u8 {
|
|
match val {
|
|
#(
|
|
PllP::Div~P => P,
|
|
)*
|
|
}
|
|
}
|
|
}
|
|
});
|
|
|
|
impl PllP {
|
|
/// Returns the numeric value of the P output divider.
|
|
pub fn to_div(self) -> u32 {
|
|
let val: u8 = self.into();
|
|
val as u32
|
|
}
|
|
}
|
|
|
|
/// Output divider for the PLL Q output.
|
|
#[derive(Clone, Copy)]
|
|
pub enum PllQ {
|
|
Div2,
|
|
Div4,
|
|
Div6,
|
|
Div8,
|
|
}
|
|
|
|
impl PllQ {
|
|
/// Returns the numeric value of the Q output divider.
|
|
pub fn to_div(self) -> u32 {
|
|
let val: u8 = self.into();
|
|
(val as u32 + 1) * 2
|
|
}
|
|
}
|
|
|
|
impl From<PllQ> for u8 {
|
|
/// Returns the register value for the Q output divider.
|
|
fn from(val: PllQ) -> u8 {
|
|
match val {
|
|
PllQ::Div2 => 0b00,
|
|
PllQ::Div4 => 0b01,
|
|
PllQ::Div6 => 0b10,
|
|
PllQ::Div8 => 0b11,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Output divider for the PLL R output.
|
|
#[derive(Clone, Copy)]
|
|
pub enum PllR {
|
|
Div2,
|
|
Div4,
|
|
Div6,
|
|
Div8,
|
|
}
|
|
|
|
impl PllR {
|
|
/// Returns the numeric value of the R output divider.
|
|
pub fn to_div(self) -> u32 {
|
|
let val: u8 = self.into();
|
|
(val as u32 + 1) * 2
|
|
}
|
|
}
|
|
|
|
impl From<PllR> for u8 {
|
|
/// Returns the register value for the R output divider.
|
|
fn from(val: PllR) -> u8 {
|
|
match val {
|
|
PllR::Div2 => 0b00,
|
|
PllR::Div4 => 0b01,
|
|
PllR::Div6 => 0b10,
|
|
PllR::Div8 => 0b11,
|
|
}
|
|
}
|
|
}
|
|
|
|
seq_macro::seq!(N in 8..=127 {
|
|
/// Multiplication factor for the PLL VCO input clock.
|
|
#[derive(Clone, Copy)]
|
|
pub enum PllN {
|
|
#(
|
|
Mul~N,
|
|
)*
|
|
}
|
|
|
|
impl From<PllN> for u8 {
|
|
/// Returns the register value for the N multiplication factor.
|
|
fn from(val: PllN) -> u8 {
|
|
match val {
|
|
#(
|
|
PllN::Mul~N => N,
|
|
)*
|
|
}
|
|
}
|
|
}
|
|
|
|
impl PllN {
|
|
/// Returns the numeric value of the N multiplication factor.
|
|
pub fn to_mul(self) -> u32 {
|
|
match self {
|
|
#(
|
|
PllN::Mul~N => N,
|
|
)*
|
|
}
|
|
}
|
|
}
|
|
});
|
|
|
|
/// PLL Pre-division. This must be set such that the PLL input is between 2.66 MHz and 16 MHz.
|
|
#[derive(Copy, Clone)]
|
|
pub enum PllM {
|
|
Div1,
|
|
Div2,
|
|
Div3,
|
|
Div4,
|
|
Div5,
|
|
Div6,
|
|
Div7,
|
|
Div8,
|
|
Div9,
|
|
Div10,
|
|
Div11,
|
|
Div12,
|
|
Div13,
|
|
Div14,
|
|
Div15,
|
|
Div16,
|
|
}
|
|
|
|
impl PllM {
|
|
/// Returns the numeric value of the M pre-division.
|
|
pub fn to_div(self) -> u32 {
|
|
let val: u8 = self.into();
|
|
val as u32 + 1
|
|
}
|
|
}
|
|
|
|
impl From<PllM> for u8 {
|
|
/// Returns the register value for the M pre-division.
|
|
fn from(val: PllM) -> u8 {
|
|
match val {
|
|
PllM::Div1 => 0b0000,
|
|
PllM::Div2 => 0b0001,
|
|
PllM::Div3 => 0b0010,
|
|
PllM::Div4 => 0b0011,
|
|
PllM::Div5 => 0b0100,
|
|
PllM::Div6 => 0b0101,
|
|
PllM::Div7 => 0b0110,
|
|
PllM::Div8 => 0b0111,
|
|
PllM::Div9 => 0b1000,
|
|
PllM::Div10 => 0b1001,
|
|
PllM::Div11 => 0b1010,
|
|
PllM::Div12 => 0b1011,
|
|
PllM::Div13 => 0b1100,
|
|
PllM::Div14 => 0b1101,
|
|
PllM::Div15 => 0b1110,
|
|
PllM::Div16 => 0b1111,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// PLL Configuration
|
|
///
|
|
/// Use this struct to configure the PLL source, input frequency, multiplication factor, and output
|
|
/// dividers. Be sure to keep check the datasheet for your specific part for the appropriate
|
|
/// frequency ranges for each of these settings.
|
|
pub struct Pll {
|
|
/// PLL Source clock selection.
|
|
pub source: PllSrc,
|
|
|
|
/// PLL pre-divider
|
|
pub prediv_m: PllM,
|
|
|
|
/// PLL multiplication factor for VCO
|
|
pub mul_n: PllN,
|
|
|
|
/// PLL division factor for P clock (ADC Clock)
|
|
pub div_p: Option<PllP>,
|
|
|
|
/// PLL division factor for Q clock (USB, I2S23, SAI1, FDCAN, QSPI)
|
|
pub div_q: Option<PllQ>,
|
|
|
|
/// PLL division factor for R clock (SYSCLK)
|
|
pub div_r: Option<PllR>,
|
|
}
|
|
|
|
impl AHBPrescaler {
|
|
const fn div(self) -> u32 {
|
|
match self {
|
|
AHBPrescaler::NotDivided => 1,
|
|
AHBPrescaler::Div2 => 2,
|
|
AHBPrescaler::Div4 => 4,
|
|
AHBPrescaler::Div8 => 8,
|
|
AHBPrescaler::Div16 => 16,
|
|
AHBPrescaler::Div64 => 64,
|
|
AHBPrescaler::Div128 => 128,
|
|
AHBPrescaler::Div256 => 256,
|
|
AHBPrescaler::Div512 => 512,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl APBPrescaler {
|
|
const fn div(self) -> u32 {
|
|
match self {
|
|
APBPrescaler::NotDivided => 1,
|
|
APBPrescaler::Div2 => 2,
|
|
APBPrescaler::Div4 => 4,
|
|
APBPrescaler::Div8 => 8,
|
|
APBPrescaler::Div16 => 16,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Into<Ppre> for APBPrescaler {
|
|
fn into(self) -> Ppre {
|
|
match self {
|
|
APBPrescaler::NotDivided => Ppre::DIV1,
|
|
APBPrescaler::Div2 => Ppre::DIV2,
|
|
APBPrescaler::Div4 => Ppre::DIV4,
|
|
APBPrescaler::Div8 => Ppre::DIV8,
|
|
APBPrescaler::Div16 => Ppre::DIV16,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Into<Hpre> for AHBPrescaler {
|
|
fn into(self) -> Hpre {
|
|
match self {
|
|
AHBPrescaler::NotDivided => Hpre::DIV1,
|
|
AHBPrescaler::Div2 => Hpre::DIV2,
|
|
AHBPrescaler::Div4 => Hpre::DIV4,
|
|
AHBPrescaler::Div8 => Hpre::DIV8,
|
|
AHBPrescaler::Div16 => Hpre::DIV16,
|
|
AHBPrescaler::Div64 => Hpre::DIV64,
|
|
AHBPrescaler::Div128 => Hpre::DIV128,
|
|
AHBPrescaler::Div256 => Hpre::DIV256,
|
|
AHBPrescaler::Div512 => Hpre::DIV512,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Clocks configutation
|
|
pub struct Config {
|
|
pub mux: ClockSrc,
|
|
pub ahb_pre: AHBPrescaler,
|
|
pub apb1_pre: APBPrescaler,
|
|
pub apb2_pre: APBPrescaler,
|
|
pub low_power_run: bool,
|
|
/// Iff PLL is requested as the main clock source in the `mux` field then the PLL configuration
|
|
/// MUST turn on the PLLR output.
|
|
pub pll: Option<Pll>,
|
|
}
|
|
|
|
impl Default for Config {
|
|
#[inline]
|
|
fn default() -> Config {
|
|
Config {
|
|
mux: ClockSrc::HSI16,
|
|
ahb_pre: AHBPrescaler::NotDivided,
|
|
apb1_pre: APBPrescaler::NotDivided,
|
|
apb2_pre: APBPrescaler::NotDivided,
|
|
low_power_run: false,
|
|
pll: None,
|
|
}
|
|
}
|
|
}
|
|
|
|
pub struct PllFreq {
|
|
pub pll_p: Option<Hertz>,
|
|
pub pll_q: Option<Hertz>,
|
|
pub pll_r: Option<Hertz>,
|
|
}
|
|
|
|
pub(crate) unsafe fn init(config: Config) {
|
|
let pll_freq = config.pll.map(|pll_config| {
|
|
let src_freq = match pll_config.source {
|
|
PllSrc::HSI16 => {
|
|
RCC.cr().write(|w| w.set_hsion(true));
|
|
while !RCC.cr().read().hsirdy() {}
|
|
|
|
HSI_FREQ.0
|
|
}
|
|
PllSrc::HSE(freq) => {
|
|
RCC.cr().write(|w| w.set_hseon(true));
|
|
while !RCC.cr().read().hserdy() {}
|
|
freq.0
|
|
}
|
|
};
|
|
|
|
// Disable PLL before configuration
|
|
RCC.cr().modify(|w| w.set_pllon(false));
|
|
while RCC.cr().read().pllrdy() {}
|
|
|
|
let internal_freq = src_freq / pll_config.prediv_m.to_div() * pll_config.mul_n.to_mul();
|
|
|
|
RCC.pllcfgr().write(|w| {
|
|
w.set_plln(pll_config.mul_n.into());
|
|
w.set_pllm(pll_config.prediv_m.into());
|
|
w.set_pllsrc(pll_config.source.into());
|
|
});
|
|
|
|
let pll_p_freq = pll_config.div_p.map(|div_p| {
|
|
RCC.pllcfgr().modify(|w| {
|
|
w.set_pllpdiv(div_p.into());
|
|
w.set_pllpen(true);
|
|
});
|
|
Hertz(internal_freq / div_p.to_div())
|
|
});
|
|
|
|
let pll_q_freq = pll_config.div_q.map(|div_q| {
|
|
RCC.pllcfgr().modify(|w| {
|
|
w.set_pllq(div_q.into());
|
|
w.set_pllqen(true);
|
|
});
|
|
Hertz(internal_freq / div_q.to_div())
|
|
});
|
|
|
|
let pll_r_freq = pll_config.div_r.map(|div_r| {
|
|
RCC.pllcfgr().modify(|w| {
|
|
w.set_pllr(div_r.into());
|
|
w.set_pllren(true);
|
|
});
|
|
Hertz(internal_freq / div_r.to_div())
|
|
});
|
|
|
|
// Enable the PLL
|
|
RCC.cr().modify(|w| w.set_pllon(true));
|
|
while !RCC.cr().read().pllrdy() {}
|
|
|
|
PllFreq {
|
|
pll_p: pll_p_freq,
|
|
pll_q: pll_q_freq,
|
|
pll_r: pll_r_freq,
|
|
}
|
|
});
|
|
|
|
let (sys_clk, sw) = match config.mux {
|
|
ClockSrc::HSI16 => {
|
|
// Enable HSI16
|
|
RCC.cr().write(|w| w.set_hsion(true));
|
|
while !RCC.cr().read().hsirdy() {}
|
|
|
|
(HSI_FREQ.0, Sw::HSI16)
|
|
}
|
|
ClockSrc::HSE(freq) => {
|
|
// Enable HSE
|
|
RCC.cr().write(|w| w.set_hseon(true));
|
|
while !RCC.cr().read().hserdy() {}
|
|
|
|
(freq.0, Sw::HSE)
|
|
}
|
|
ClockSrc::PLL => {
|
|
assert!(pll_freq.is_some());
|
|
assert!(pll_freq.as_ref().unwrap().pll_r.is_some());
|
|
|
|
let freq = pll_freq.unwrap().pll_r.unwrap().0;
|
|
|
|
assert!(freq <= 170_000_000);
|
|
|
|
if freq >= 150_000_000 {
|
|
// Enable Core Boost mode on freq >= 150Mhz ([RM0440] p234)
|
|
PWR.cr5().modify(|w| w.set_r1mode(false));
|
|
// Set flash wait state in boost mode based on frequency ([RM0440] p191)
|
|
if freq <= 36_000_000 {
|
|
FLASH.acr().modify(|w| w.set_latency(Latency::WS0));
|
|
} else if freq <= 68_000_000 {
|
|
FLASH.acr().modify(|w| w.set_latency(Latency::WS1));
|
|
} else if freq <= 102_000_000 {
|
|
FLASH.acr().modify(|w| w.set_latency(Latency::WS2));
|
|
} else if freq <= 136_000_000 {
|
|
FLASH.acr().modify(|w| w.set_latency(Latency::WS3));
|
|
} else {
|
|
FLASH.acr().modify(|w| w.set_latency(Latency::WS4));
|
|
}
|
|
} else {
|
|
PWR.cr5().modify(|w| w.set_r1mode(true));
|
|
// Set flash wait state in normal mode based on frequency ([RM0440] p191)
|
|
if freq <= 30_000_000 {
|
|
FLASH.acr().modify(|w| w.set_latency(Latency::WS0));
|
|
} else if freq <= 60_000_000 {
|
|
FLASH.acr().modify(|w| w.set_latency(Latency::WS1));
|
|
} else if freq <= 80_000_000 {
|
|
FLASH.acr().modify(|w| w.set_latency(Latency::WS2));
|
|
} else if freq <= 120_000_000 {
|
|
FLASH.acr().modify(|w| w.set_latency(Latency::WS3));
|
|
} else {
|
|
FLASH.acr().modify(|w| w.set_latency(Latency::WS4));
|
|
}
|
|
}
|
|
|
|
(freq, Sw::PLLRCLK)
|
|
}
|
|
};
|
|
|
|
RCC.cfgr().modify(|w| {
|
|
w.set_sw(sw);
|
|
w.set_hpre(config.ahb_pre.into());
|
|
w.set_ppre1(config.apb1_pre.into());
|
|
w.set_ppre2(config.apb2_pre.into());
|
|
});
|
|
|
|
let ahb_freq: u32 = match config.ahb_pre {
|
|
AHBPrescaler::NotDivided => sys_clk,
|
|
pre => sys_clk / pre.div(),
|
|
};
|
|
|
|
let (apb1_freq, apb1_tim_freq) = match config.apb1_pre {
|
|
APBPrescaler::NotDivided => (ahb_freq, ahb_freq),
|
|
pre => {
|
|
let freq = ahb_freq / pre.div();
|
|
(freq, freq * 2)
|
|
}
|
|
};
|
|
|
|
let (apb2_freq, apb2_tim_freq) = match config.apb2_pre {
|
|
APBPrescaler::NotDivided => (ahb_freq, ahb_freq),
|
|
pre => {
|
|
let freq = ahb_freq / pre.div();
|
|
(freq, freq * 2)
|
|
}
|
|
};
|
|
|
|
if config.low_power_run {
|
|
assert!(sys_clk <= 2_000_000);
|
|
PWR.cr1().modify(|w| w.set_lpr(true));
|
|
}
|
|
|
|
set_freqs(Clocks {
|
|
sys: Hertz(sys_clk),
|
|
ahb1: Hertz(ahb_freq),
|
|
ahb2: Hertz(ahb_freq),
|
|
apb1: Hertz(apb1_freq),
|
|
apb1_tim: Hertz(apb1_tim_freq),
|
|
apb2: Hertz(apb2_freq),
|
|
apb2_tim: Hertz(apb2_tim_freq),
|
|
});
|
|
}
|