embassy/embassy-nrf/src/buffered_uarte.rs
2023-08-07 13:43:09 +02:00

677 lines
22 KiB
Rust

//! Async buffered UART driver.
//!
//! Note that discarding a future from a read or write operation may lead to losing
//! data. For example, when using `futures_util::future::select` and completion occurs
//! on the "other" future, you should capture the incomplete future and continue to use
//! it for the next read or write. This pattern is a consideration for all IO, and not
//! just serial communications.
//!
//! Please also see [crate::uarte] to understand when [BufferedUarte] should be used.
use core::cmp::min;
use core::future::poll_fn;
use core::marker::PhantomData;
use core::slice;
use core::sync::atomic::{compiler_fence, AtomicU8, AtomicUsize, Ordering};
use core::task::Poll;
use embassy_hal_internal::atomic_ring_buffer::RingBuffer;
use embassy_hal_internal::{into_ref, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
// Re-export SVD variants to allow user to directly set values
pub use pac::uarte0::{baudrate::BAUDRATE_A as Baudrate, config::PARITY_A as Parity};
use crate::gpio::sealed::Pin;
use crate::gpio::{self, AnyPin, Pin as GpioPin, PselBits};
use crate::interrupt::typelevel::Interrupt;
use crate::ppi::{
self, AnyConfigurableChannel, AnyGroup, Channel, ConfigurableChannel, Event, Group, Ppi, PpiGroup, Task,
};
use crate::timer::{Instance as TimerInstance, Timer};
use crate::uarte::{apply_workaround_for_enable_anomaly, Config, Instance as UarteInstance};
use crate::{interrupt, pac, Peripheral};
mod sealed {
use super::*;
pub struct State {
pub tx_waker: AtomicWaker,
pub tx_buf: RingBuffer,
pub tx_count: AtomicUsize,
pub rx_waker: AtomicWaker,
pub rx_buf: RingBuffer,
pub rx_bufs: AtomicU8,
pub rx_ppi_ch: AtomicU8,
}
}
/// UART error.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub enum Error {
// No errors for now
}
pub(crate) use sealed::State;
impl State {
pub(crate) const fn new() -> Self {
Self {
tx_waker: AtomicWaker::new(),
tx_buf: RingBuffer::new(),
tx_count: AtomicUsize::new(0),
rx_waker: AtomicWaker::new(),
rx_buf: RingBuffer::new(),
rx_bufs: AtomicU8::new(0),
rx_ppi_ch: AtomicU8::new(0),
}
}
}
/// Interrupt handler.
pub struct InterruptHandler<U: UarteInstance> {
_phantom: PhantomData<U>,
}
impl<U: UarteInstance> interrupt::typelevel::Handler<U::Interrupt> for InterruptHandler<U> {
unsafe fn on_interrupt() {
//trace!("irq: start");
let r = U::regs();
let s = U::buffered_state();
let buf_len = s.rx_buf.len();
let half_len = buf_len / 2;
let mut tx = unsafe { s.tx_buf.reader() };
let mut rx = unsafe { s.rx_buf.writer() };
if r.events_error.read().bits() != 0 {
r.events_error.reset();
let errs = r.errorsrc.read();
r.errorsrc.write(|w| unsafe { w.bits(errs.bits()) });
if errs.overrun().bit() {
panic!("BufferedUarte overrun");
}
}
// Received some bytes, wake task.
if r.inten.read().rxdrdy().bit_is_set() && r.events_rxdrdy.read().bits() != 0 {
r.intenclr.write(|w| w.rxdrdy().clear());
r.events_rxdrdy.reset();
s.rx_waker.wake();
}
// If not RXing, start.
if s.rx_bufs.load(Ordering::Relaxed) == 0 {
let (ptr, len) = rx.push_buf();
if len >= half_len {
//trace!(" irq_rx: starting {:?}", half_len);
s.rx_bufs.store(1, Ordering::Relaxed);
// Set up the DMA read
r.rxd.ptr.write(|w| unsafe { w.ptr().bits(ptr as u32) });
r.rxd.maxcnt.write(|w| unsafe { w.maxcnt().bits(half_len as _) });
// Start UARTE Receive transaction
r.tasks_startrx.write(|w| unsafe { w.bits(1) });
rx.push_done(half_len);
r.intenset.write(|w| w.rxstarted().set());
}
}
if r.events_rxstarted.read().bits() != 0 {
//trace!(" irq_rx: rxstarted");
let (ptr, len) = rx.push_buf();
if len >= half_len {
//trace!(" irq_rx: starting second {:?}", half_len);
// Set up the DMA read
r.rxd.ptr.write(|w| unsafe { w.ptr().bits(ptr as u32) });
r.rxd.maxcnt.write(|w| unsafe { w.maxcnt().bits(half_len as _) });
let chn = s.rx_ppi_ch.load(Ordering::Relaxed);
ppi::regs().chenset.write(|w| unsafe { w.bits(1 << chn) });
rx.push_done(half_len);
r.events_rxstarted.reset();
} else {
//trace!(" irq_rx: rxstarted no buf");
r.intenclr.write(|w| w.rxstarted().clear());
}
}
// =============================
// TX end
if r.events_endtx.read().bits() != 0 {
r.events_endtx.reset();
let n = s.tx_count.load(Ordering::Relaxed);
//trace!(" irq_tx: endtx {:?}", n);
tx.pop_done(n);
s.tx_waker.wake();
s.tx_count.store(0, Ordering::Relaxed);
}
// If not TXing, start.
if s.tx_count.load(Ordering::Relaxed) == 0 {
let (ptr, len) = tx.pop_buf();
if len != 0 {
//trace!(" irq_tx: starting {:?}", len);
s.tx_count.store(len, Ordering::Relaxed);
// Set up the DMA write
r.txd.ptr.write(|w| unsafe { w.ptr().bits(ptr as u32) });
r.txd.maxcnt.write(|w| unsafe { w.maxcnt().bits(len as _) });
// Start UARTE Transmit transaction
r.tasks_starttx.write(|w| unsafe { w.bits(1) });
}
}
//trace!("irq: end");
}
}
/// Buffered UARTE driver.
pub struct BufferedUarte<'d, U: UarteInstance, T: TimerInstance> {
_peri: PeripheralRef<'d, U>,
timer: Timer<'d, T>,
_ppi_ch1: Ppi<'d, AnyConfigurableChannel, 1, 1>,
_ppi_ch2: Ppi<'d, AnyConfigurableChannel, 1, 2>,
_ppi_group: PpiGroup<'d, AnyGroup>,
}
impl<'d, U: UarteInstance, T: TimerInstance> Unpin for BufferedUarte<'d, U, T> {}
impl<'d, U: UarteInstance, T: TimerInstance> BufferedUarte<'d, U, T> {
/// Create a new BufferedUarte without hardware flow control.
///
/// # Panics
///
/// Panics if `rx_buffer.len()` is odd.
pub fn new(
uarte: impl Peripheral<P = U> + 'd,
timer: impl Peripheral<P = T> + 'd,
ppi_ch1: impl Peripheral<P = impl ConfigurableChannel> + 'd,
ppi_ch2: impl Peripheral<P = impl ConfigurableChannel> + 'd,
ppi_group: impl Peripheral<P = impl Group> + 'd,
_irq: impl interrupt::typelevel::Binding<U::Interrupt, InterruptHandler<U>> + 'd,
rxd: impl Peripheral<P = impl GpioPin> + 'd,
txd: impl Peripheral<P = impl GpioPin> + 'd,
config: Config,
rx_buffer: &'d mut [u8],
tx_buffer: &'d mut [u8],
) -> Self {
into_ref!(rxd, txd, ppi_ch1, ppi_ch2, ppi_group);
Self::new_inner(
uarte,
timer,
ppi_ch1.map_into(),
ppi_ch2.map_into(),
ppi_group.map_into(),
rxd.map_into(),
txd.map_into(),
None,
None,
config,
rx_buffer,
tx_buffer,
)
}
/// Create a new BufferedUarte with hardware flow control (RTS/CTS)
///
/// # Panics
///
/// Panics if `rx_buffer.len()` is odd.
pub fn new_with_rtscts(
uarte: impl Peripheral<P = U> + 'd,
timer: impl Peripheral<P = T> + 'd,
ppi_ch1: impl Peripheral<P = impl ConfigurableChannel> + 'd,
ppi_ch2: impl Peripheral<P = impl ConfigurableChannel> + 'd,
ppi_group: impl Peripheral<P = impl Group> + 'd,
_irq: impl interrupt::typelevel::Binding<U::Interrupt, InterruptHandler<U>> + 'd,
rxd: impl Peripheral<P = impl GpioPin> + 'd,
txd: impl Peripheral<P = impl GpioPin> + 'd,
cts: impl Peripheral<P = impl GpioPin> + 'd,
rts: impl Peripheral<P = impl GpioPin> + 'd,
config: Config,
rx_buffer: &'d mut [u8],
tx_buffer: &'d mut [u8],
) -> Self {
into_ref!(rxd, txd, cts, rts, ppi_ch1, ppi_ch2, ppi_group);
Self::new_inner(
uarte,
timer,
ppi_ch1.map_into(),
ppi_ch2.map_into(),
ppi_group.map_into(),
rxd.map_into(),
txd.map_into(),
Some(cts.map_into()),
Some(rts.map_into()),
config,
rx_buffer,
tx_buffer,
)
}
fn new_inner(
peri: impl Peripheral<P = U> + 'd,
timer: impl Peripheral<P = T> + 'd,
ppi_ch1: PeripheralRef<'d, AnyConfigurableChannel>,
ppi_ch2: PeripheralRef<'d, AnyConfigurableChannel>,
ppi_group: PeripheralRef<'d, AnyGroup>,
rxd: PeripheralRef<'d, AnyPin>,
txd: PeripheralRef<'d, AnyPin>,
cts: Option<PeripheralRef<'d, AnyPin>>,
rts: Option<PeripheralRef<'d, AnyPin>>,
config: Config,
rx_buffer: &'d mut [u8],
tx_buffer: &'d mut [u8],
) -> Self {
into_ref!(peri, timer);
assert!(rx_buffer.len() % 2 == 0);
let r = U::regs();
rxd.conf().write(|w| w.input().connect().drive().h0h1());
r.psel.rxd.write(|w| unsafe { w.bits(rxd.psel_bits()) });
txd.set_high();
txd.conf().write(|w| w.dir().output().drive().h0h1());
r.psel.txd.write(|w| unsafe { w.bits(txd.psel_bits()) });
if let Some(pin) = &cts {
pin.conf().write(|w| w.input().connect().drive().h0h1());
}
r.psel.cts.write(|w| unsafe { w.bits(cts.psel_bits()) });
if let Some(pin) = &rts {
pin.set_high();
pin.conf().write(|w| w.dir().output().drive().h0h1());
}
r.psel.rts.write(|w| unsafe { w.bits(rts.psel_bits()) });
// Initialize state
let s = U::buffered_state();
s.tx_count.store(0, Ordering::Relaxed);
s.rx_bufs.store(0, Ordering::Relaxed);
let len = tx_buffer.len();
unsafe { s.tx_buf.init(tx_buffer.as_mut_ptr(), len) };
let len = rx_buffer.len();
unsafe { s.rx_buf.init(rx_buffer.as_mut_ptr(), len) };
// Configure
r.config.write(|w| {
w.hwfc().bit(false);
w.parity().variant(config.parity);
w
});
r.baudrate.write(|w| w.baudrate().variant(config.baudrate));
// clear errors
let errors = r.errorsrc.read().bits();
r.errorsrc.write(|w| unsafe { w.bits(errors) });
r.events_rxstarted.reset();
r.events_txstarted.reset();
r.events_error.reset();
r.events_endrx.reset();
r.events_endtx.reset();
// Enable interrupts
r.intenclr.write(|w| unsafe { w.bits(!0) });
r.intenset.write(|w| {
w.endtx().set();
w.rxstarted().set();
w.error().set();
w
});
// Enable UARTE instance
apply_workaround_for_enable_anomaly(&r);
r.enable.write(|w| w.enable().enabled());
// Configure byte counter.
let timer = Timer::new_counter(timer);
timer.cc(1).write(rx_buffer.len() as u32 * 2);
timer.cc(1).short_compare_clear();
timer.clear();
timer.start();
let mut ppi_ch1 = Ppi::new_one_to_one(ppi_ch1, Event::from_reg(&r.events_rxdrdy), timer.task_count());
ppi_ch1.enable();
s.rx_ppi_ch.store(ppi_ch2.number() as u8, Ordering::Relaxed);
let mut ppi_group = PpiGroup::new(ppi_group);
let mut ppi_ch2 = Ppi::new_one_to_two(
ppi_ch2,
Event::from_reg(&r.events_endrx),
Task::from_reg(&r.tasks_startrx),
ppi_group.task_disable_all(),
);
ppi_ch2.disable();
ppi_group.add_channel(&ppi_ch2);
U::Interrupt::pend();
unsafe { U::Interrupt::enable() };
Self {
_peri: peri,
timer,
_ppi_ch1: ppi_ch1,
_ppi_ch2: ppi_ch2,
_ppi_group: ppi_group,
}
}
fn pend_irq() {
U::Interrupt::pend()
}
/// Adjust the baud rate to the provided value.
pub fn set_baudrate(&mut self, baudrate: Baudrate) {
let r = U::regs();
r.baudrate.write(|w| w.baudrate().variant(baudrate));
}
/// Split the UART in reader and writer parts.
///
/// This allows reading and writing concurrently from independent tasks.
pub fn split<'u>(&'u mut self) -> (BufferedUarteRx<'u, 'd, U, T>, BufferedUarteTx<'u, 'd, U, T>) {
(BufferedUarteRx { inner: self }, BufferedUarteTx { inner: self })
}
async fn inner_read(&self, buf: &mut [u8]) -> Result<usize, Error> {
let data = self.inner_fill_buf().await?;
let n = data.len().min(buf.len());
buf[..n].copy_from_slice(&data[..n]);
self.inner_consume(n);
Ok(n)
}
async fn inner_write<'a>(&'a self, buf: &'a [u8]) -> Result<usize, Error> {
poll_fn(move |cx| {
//trace!("poll_write: {:?}", buf.len());
let s = U::buffered_state();
let mut tx = unsafe { s.tx_buf.writer() };
let tx_buf = tx.push_slice();
if tx_buf.is_empty() {
//trace!("poll_write: pending");
s.tx_waker.register(cx.waker());
return Poll::Pending;
}
let n = min(tx_buf.len(), buf.len());
tx_buf[..n].copy_from_slice(&buf[..n]);
tx.push_done(n);
//trace!("poll_write: queued {:?}", n);
compiler_fence(Ordering::SeqCst);
Self::pend_irq();
Poll::Ready(Ok(n))
})
.await
}
async fn inner_flush<'a>(&'a self) -> Result<(), Error> {
poll_fn(move |cx| {
//trace!("poll_flush");
let s = U::buffered_state();
if !s.tx_buf.is_empty() {
//trace!("poll_flush: pending");
s.tx_waker.register(cx.waker());
return Poll::Pending;
}
Poll::Ready(Ok(()))
})
.await
}
async fn inner_fill_buf<'a>(&'a self) -> Result<&'a [u8], Error> {
poll_fn(move |cx| {
compiler_fence(Ordering::SeqCst);
//trace!("poll_read");
let r = U::regs();
let s = U::buffered_state();
// Read the RXDRDY counter.
T::regs().tasks_capture[0].write(|w| unsafe { w.bits(1) });
let mut end = T::regs().cc[0].read().bits() as usize;
//trace!(" rxdrdy count = {:?}", end);
// We've set a compare channel that resets the counter to 0 when it reaches `len*2`.
// However, it's unclear if that's instant, or there's a small window where you can
// still read `len()*2`.
// This could happen if in one clock cycle the counter is updated, and in the next the
// clear takes effect. The docs are very sparse, they just say "Task delays: After TIMER
// is started, the CLEAR, COUNT, and STOP tasks are guaranteed to take effect within one
// clock cycle of the PCLK16M." :shrug:
// So, we wrap the counter ourselves, just in case.
if end > s.rx_buf.len() * 2 {
end = 0
}
// This logic mirrors `atomic_ring_buffer::Reader::pop_buf()`
let mut start = s.rx_buf.start.load(Ordering::Relaxed);
let len = s.rx_buf.len();
if start == end {
//trace!(" empty");
s.rx_waker.register(cx.waker());
r.intenset.write(|w| w.rxdrdy().set_bit());
return Poll::Pending;
}
if start >= len {
start -= len
}
if end >= len {
end -= len
}
let n = if end > start { end - start } else { len - start };
assert!(n != 0);
//trace!(" uarte ringbuf: pop_buf {:?}..{:?}", start, start + n);
let buf = s.rx_buf.buf.load(Ordering::Relaxed);
Poll::Ready(Ok(unsafe { slice::from_raw_parts(buf.add(start), n) }))
})
.await
}
fn inner_consume(&self, amt: usize) {
if amt == 0 {
return;
}
let s = U::buffered_state();
let mut rx = unsafe { s.rx_buf.reader() };
rx.pop_done(amt);
U::regs().intenset.write(|w| w.rxstarted().set());
}
/// Pull some bytes from this source into the specified buffer, returning how many bytes were read.
pub async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Error> {
self.inner_read(buf).await
}
/// Return the contents of the internal buffer, filling it with more data from the inner reader if it is empty.
pub async fn fill_buf(&mut self) -> Result<&[u8], Error> {
self.inner_fill_buf().await
}
/// Tell this buffer that `amt` bytes have been consumed from the buffer, so they should no longer be returned in calls to `fill_buf`.
pub fn consume(&mut self, amt: usize) {
self.inner_consume(amt)
}
/// Write a buffer into this writer, returning how many bytes were written.
pub async fn write(&mut self, buf: &[u8]) -> Result<usize, Error> {
self.inner_write(buf).await
}
/// Flush this output stream, ensuring that all intermediately buffered contents reach their destination.
pub async fn flush(&mut self) -> Result<(), Error> {
self.inner_flush().await
}
}
/// Reader part of the buffered UARTE driver.
pub struct BufferedUarteTx<'u, 'd, U: UarteInstance, T: TimerInstance> {
inner: &'u BufferedUarte<'d, U, T>,
}
impl<'u, 'd, U: UarteInstance, T: TimerInstance> BufferedUarteTx<'u, 'd, U, T> {
/// Write a buffer into this writer, returning how many bytes were written.
pub async fn write(&mut self, buf: &[u8]) -> Result<usize, Error> {
self.inner.inner_write(buf).await
}
/// Flush this output stream, ensuring that all intermediately buffered contents reach their destination.
pub async fn flush(&mut self) -> Result<(), Error> {
self.inner.inner_flush().await
}
}
/// Writer part of the buffered UARTE driver.
pub struct BufferedUarteRx<'u, 'd, U: UarteInstance, T: TimerInstance> {
inner: &'u BufferedUarte<'d, U, T>,
}
impl<'u, 'd, U: UarteInstance, T: TimerInstance> BufferedUarteRx<'u, 'd, U, T> {
/// Pull some bytes from this source into the specified buffer, returning how many bytes were read.
pub async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Error> {
self.inner.inner_read(buf).await
}
/// Return the contents of the internal buffer, filling it with more data from the inner reader if it is empty.
pub async fn fill_buf(&mut self) -> Result<&[u8], Error> {
self.inner.inner_fill_buf().await
}
/// Tell this buffer that `amt` bytes have been consumed from the buffer, so they should no longer be returned in calls to `fill_buf`.
pub fn consume(&mut self, amt: usize) {
self.inner.inner_consume(amt)
}
}
#[cfg(feature = "nightly")]
mod _embedded_io {
use super::*;
impl embedded_io_async::Error for Error {
fn kind(&self) -> embedded_io_async::ErrorKind {
match *self {}
}
}
impl<'d, U: UarteInstance, T: TimerInstance> embedded_io_async::ErrorType for BufferedUarte<'d, U, T> {
type Error = Error;
}
impl<'u, 'd, U: UarteInstance, T: TimerInstance> embedded_io_async::ErrorType for BufferedUarteRx<'u, 'd, U, T> {
type Error = Error;
}
impl<'u, 'd, U: UarteInstance, T: TimerInstance> embedded_io_async::ErrorType for BufferedUarteTx<'u, 'd, U, T> {
type Error = Error;
}
impl<'d, U: UarteInstance, T: TimerInstance> embedded_io_async::Read for BufferedUarte<'d, U, T> {
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
self.inner_read(buf).await
}
}
impl<'u, 'd: 'u, U: UarteInstance, T: TimerInstance> embedded_io_async::Read for BufferedUarteRx<'u, 'd, U, T> {
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
self.inner.inner_read(buf).await
}
}
impl<'d, U: UarteInstance, T: TimerInstance> embedded_io_async::BufRead for BufferedUarte<'d, U, T> {
async fn fill_buf(&mut self) -> Result<&[u8], Self::Error> {
self.inner_fill_buf().await
}
fn consume(&mut self, amt: usize) {
self.inner_consume(amt)
}
}
impl<'u, 'd: 'u, U: UarteInstance, T: TimerInstance> embedded_io_async::BufRead for BufferedUarteRx<'u, 'd, U, T> {
async fn fill_buf(&mut self) -> Result<&[u8], Self::Error> {
self.inner.inner_fill_buf().await
}
fn consume(&mut self, amt: usize) {
self.inner.inner_consume(amt)
}
}
impl<'d, U: UarteInstance, T: TimerInstance> embedded_io_async::Write for BufferedUarte<'d, U, T> {
async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
self.inner_write(buf).await
}
async fn flush(&mut self) -> Result<(), Self::Error> {
self.inner_flush().await
}
}
impl<'u, 'd: 'u, U: UarteInstance, T: TimerInstance> embedded_io_async::Write for BufferedUarteTx<'u, 'd, U, T> {
async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
self.inner.inner_write(buf).await
}
async fn flush(&mut self) -> Result<(), Self::Error> {
self.inner.inner_flush().await
}
}
}
impl<'a, U: UarteInstance, T: TimerInstance> Drop for BufferedUarte<'a, U, T> {
fn drop(&mut self) {
self._ppi_group.disable_all();
let r = U::regs();
self.timer.stop();
r.inten.reset();
r.events_rxto.reset();
r.tasks_stoprx.write(|w| unsafe { w.bits(1) });
r.events_txstopped.reset();
r.tasks_stoptx.write(|w| unsafe { w.bits(1) });
while r.events_txstopped.read().bits() == 0 {}
while r.events_rxto.read().bits() == 0 {}
r.enable.write(|w| w.enable().disabled());
gpio::deconfigure_pin(r.psel.rxd.read().bits());
gpio::deconfigure_pin(r.psel.txd.read().bits());
gpio::deconfigure_pin(r.psel.rts.read().bits());
gpio::deconfigure_pin(r.psel.cts.read().bits());
let s = U::buffered_state();
unsafe {
s.rx_buf.deinit();
s.tx_buf.deinit();
}
}
}