embassy/embassy-stm32/src/rtc/v2.rs

456 lines
14 KiB
Rust

use stm32_metapac::rtc::vals::{Init, Osel, Pol};
use super::{sealed, RtcClockSource, RtcConfig};
use crate::pac::rtc::Rtc;
use crate::peripherals::RTC;
use crate::rtc::sealed::Instance;
#[cfg(all(feature = "time", any(stm32wb, stm32f4)))]
pub struct RtcInstant {
ssr: u16,
st: u8,
}
#[cfg(all(feature = "time", any(stm32wb, stm32f4)))]
impl RtcInstant {
pub fn now() -> Self {
// TODO: read value twice
use crate::rtc::bcd2_to_byte;
let tr = RTC::regs().tr().read();
let tr2 = RTC::regs().tr().read();
let ssr = RTC::regs().ssr().read().ss();
let ssr2 = RTC::regs().ssr().read().ss();
let st = bcd2_to_byte((tr.st(), tr.su()));
let st2 = bcd2_to_byte((tr2.st(), tr2.su()));
assert!(st == st2);
assert!(ssr == ssr2);
let _ = RTC::regs().dr().read();
trace!("ssr: {}", ssr);
trace!("st: {}", st);
Self { ssr, st }
}
}
#[cfg(all(feature = "time", any(stm32wb, stm32f4)))]
impl core::ops::Sub for RtcInstant {
type Output = embassy_time::Duration;
fn sub(self, rhs: Self) -> Self::Output {
use embassy_time::{Duration, TICK_HZ};
trace!("self st: {}", self.st);
trace!("other st: {}", rhs.st);
trace!("self ssr: {}", self.ssr);
trace!("other ssr: {}", rhs.ssr);
let st = if self.st < rhs.st { self.st + 60 } else { self.st };
trace!("self st: {}", st);
let self_ticks = st as u32 * 256 + (255 - self.ssr as u32);
let other_ticks = rhs.st as u32 * 256 + (255 - rhs.ssr as u32);
let rtc_ticks = self_ticks - other_ticks;
trace!("self ticks: {}", self_ticks);
trace!("other ticks: {}", other_ticks);
trace!("rtc ticks: {}", rtc_ticks);
// TODO: read prescaler
Duration::from_ticks(
((((st as u32 * 256 + (255u32 - self.ssr as u32)) - (rhs.st as u32 * 256 + (255u32 - rhs.ssr as u32)))
* TICK_HZ as u32) as u32
/ 256u32) as u64,
)
}
}
#[allow(dead_code)]
#[derive(Clone, Copy)]
pub(crate) enum WakeupPrescaler {
Div2,
Div4,
Div8,
Div16,
}
#[cfg(any(stm32wb, stm32f4))]
impl From<WakeupPrescaler> for crate::pac::rtc::vals::Wucksel {
fn from(val: WakeupPrescaler) -> Self {
use crate::pac::rtc::vals::Wucksel;
match val {
WakeupPrescaler::Div2 => Wucksel::DIV2,
WakeupPrescaler::Div4 => Wucksel::DIV4,
WakeupPrescaler::Div8 => Wucksel::DIV8,
WakeupPrescaler::Div16 => Wucksel::DIV16,
}
}
}
#[cfg(any(stm32wb, stm32f4))]
impl From<crate::pac::rtc::vals::Wucksel> for WakeupPrescaler {
fn from(val: crate::pac::rtc::vals::Wucksel) -> Self {
use crate::pac::rtc::vals::Wucksel;
match val {
Wucksel::DIV2 => WakeupPrescaler::Div2,
Wucksel::DIV4 => WakeupPrescaler::Div4,
Wucksel::DIV8 => WakeupPrescaler::Div8,
Wucksel::DIV16 => WakeupPrescaler::Div16,
_ => unreachable!(),
}
}
}
impl From<WakeupPrescaler> for u32 {
fn from(val: WakeupPrescaler) -> Self {
match val {
WakeupPrescaler::Div2 => 2,
WakeupPrescaler::Div4 => 4,
WakeupPrescaler::Div8 => 8,
WakeupPrescaler::Div16 => 16,
}
}
}
#[allow(dead_code)]
impl WakeupPrescaler {
pub fn compute_min(val: u32) -> Self {
*[
WakeupPrescaler::Div2,
WakeupPrescaler::Div4,
WakeupPrescaler::Div8,
WakeupPrescaler::Div16,
]
.iter()
.skip_while(|psc| <WakeupPrescaler as Into<u32>>::into(**psc) <= val)
.next()
.unwrap_or(&WakeupPrescaler::Div16)
}
}
impl super::Rtc {
fn unlock_registers() {
#[cfg(any(rtc_v2f2, rtc_v2f3, rtc_v2l1))]
let cr = crate::pac::PWR.cr();
#[cfg(any(rtc_v2f4, rtc_v2f7, rtc_v2h7, rtc_v2l4, rtc_v2wb))]
let cr = crate::pac::PWR.cr1();
// TODO: Missing from PAC for l0 and f0?
#[cfg(not(any(rtc_v2f0, rtc_v2l0)))]
{
if !cr.read().dbp() {
cr.modify(|w| w.set_dbp(true));
while !cr.read().dbp() {}
}
}
}
#[allow(dead_code)]
#[cfg(all(feature = "time", any(stm32wb, stm32f4)))]
/// start the wakeup alarm and return the actual duration of the alarm
/// the actual duration will be the closest value possible that is less
/// than the requested duration.
///
/// note: this api is exposed for testing purposes until low power is implemented.
/// it is not intended to be public
pub(crate) fn start_wakeup_alarm(requested_duration: embassy_time::Duration) -> RtcInstant {
use embassy_time::{Duration, TICK_HZ};
use crate::interrupt::typelevel::Interrupt;
use crate::rcc::get_freqs;
let rtc_hz = unsafe { get_freqs() }.rtc.unwrap().0 as u64;
let rtc_ticks = requested_duration.as_ticks() * rtc_hz / TICK_HZ;
let prescaler = WakeupPrescaler::compute_min((rtc_ticks / u16::MAX as u64) as u32);
// adjust the rtc ticks to the prescaler
let rtc_ticks = rtc_ticks / (<WakeupPrescaler as Into<u32>>::into(prescaler) as u64);
let rtc_ticks = if rtc_ticks >= u16::MAX as u64 {
u16::MAX - 1
} else {
rtc_ticks as u16
};
let duration = Duration::from_ticks(
rtc_ticks as u64 * TICK_HZ * (<WakeupPrescaler as Into<u32>>::into(prescaler) as u64) / rtc_hz,
);
trace!("set wakeup timer for {} ms", duration.as_millis());
RTC::regs().wpr().write(|w| w.set_key(0xca));
RTC::regs().wpr().write(|w| w.set_key(0x53));
RTC::regs().wutr().modify(|w| w.set_wut(rtc_ticks));
RTC::regs().cr().modify(|w| {
w.set_wucksel(prescaler.into());
w.set_wutie(true);
w.set_wute(true);
});
if !RTC::regs().cr().read().wute() {
trace!("wakeup timer not enabled");
} else {
trace!("wakeup timer enabled");
}
crate::interrupt::typelevel::RTC_WKUP::unpend();
unsafe { crate::interrupt::typelevel::RTC_WKUP::enable() };
RtcInstant::now()
}
#[allow(dead_code)]
#[cfg(all(feature = "time", any(stm32wb, stm32f4)))]
/// stop the wakeup alarm and return the time remaining
///
/// note: this api is exposed for testing purposes until low power is implemented.
/// it is not intended to be public
pub(crate) fn stop_wakeup_alarm() -> RtcInstant {
use crate::interrupt::typelevel::Interrupt;
crate::interrupt::typelevel::RTC_WKUP::disable();
trace!("disable wakeup timer...");
RTC::regs().cr().modify(|w| {
w.set_wute(false);
});
trace!("wait for wakeup timer stop...");
// Wait for the wakeup timer to stop
// while !RTC::regs().isr().read().wutf() {}
//
// RTC::regs().isr().modify(|w| w.set_wutf(false));
trace!("wait for wakeup timer stop...done");
RtcInstant::now()
}
#[allow(dead_code)]
pub(crate) fn set_clock_source(clock_source: RtcClockSource) {
#[cfg(not(rtc_v2wb))]
use stm32_metapac::rcc::vals::Rtcsel;
#[cfg(not(any(rtc_v2l0, rtc_v2l1)))]
let cr = crate::pac::RCC.bdcr();
#[cfg(any(rtc_v2l0, rtc_v2l1))]
let cr = crate::pac::RCC.csr();
Self::unlock_registers();
cr.modify(|w| {
// Select RTC source
#[cfg(not(rtc_v2wb))]
w.set_rtcsel(Rtcsel::from_bits(clock_source as u8));
#[cfg(rtc_v2wb)]
w.set_rtcsel(clock_source as u8);
});
}
pub(super) fn enable() {
#[cfg(not(any(rtc_v2l0, rtc_v2l1)))]
let reg = crate::pac::RCC.bdcr().read();
#[cfg(any(rtc_v2l0, rtc_v2l1))]
let reg = crate::pac::RCC.csr().read();
#[cfg(any(rtc_v2h7, rtc_v2l4, rtc_v2wb))]
assert!(!reg.lsecsson(), "RTC is not compatible with LSE CSS, yet.");
if !reg.rtcen() {
Self::unlock_registers();
#[cfg(not(any(rtc_v2l0, rtc_v2l1, rtc_v2f2)))]
crate::pac::RCC.bdcr().modify(|w| w.set_bdrst(true));
#[cfg(not(any(rtc_v2l0, rtc_v2l1)))]
let cr = crate::pac::RCC.bdcr();
#[cfg(any(rtc_v2l0, rtc_v2l1))]
let cr = crate::pac::RCC.csr();
cr.modify(|w| {
// Reset
#[cfg(not(any(rtc_v2l0, rtc_v2l1)))]
w.set_bdrst(false);
w.set_rtcen(true);
w.set_rtcsel(reg.rtcsel());
// Restore bcdr
#[cfg(any(rtc_v2l4, rtc_v2wb))]
w.set_lscosel(reg.lscosel());
#[cfg(any(rtc_v2l4, rtc_v2wb))]
w.set_lscoen(reg.lscoen());
w.set_lseon(reg.lseon());
#[cfg(any(rtc_v2f0, rtc_v2f7, rtc_v2h7, rtc_v2l4, rtc_v2wb))]
w.set_lsedrv(reg.lsedrv());
w.set_lsebyp(reg.lsebyp());
});
}
}
/// Applies the RTC config
/// It this changes the RTC clock source the time will be reset
pub(super) fn configure(&mut self, rtc_config: RtcConfig) {
self.write(true, |rtc| {
rtc.cr().modify(|w| {
#[cfg(rtc_v2f2)]
w.set_fmt(false);
#[cfg(not(rtc_v2f2))]
w.set_fmt(stm32_metapac::rtc::vals::Fmt::TWENTY_FOUR_HOUR);
w.set_osel(Osel::DISABLED);
w.set_pol(Pol::HIGH);
});
rtc.prer().modify(|w| {
w.set_prediv_s(rtc_config.sync_prescaler);
w.set_prediv_a(rtc_config.async_prescaler);
});
});
}
/// Calibrate the clock drift.
///
/// `clock_drift` can be adjusted from -487.1 ppm to 488.5 ppm and is clamped to this range.
///
/// ### Note
///
/// To perform a calibration when `async_prescaler` is less then 3, `sync_prescaler`
/// has to be reduced accordingly (see RM0351 Rev 9, sec 38.3.12).
#[cfg(not(rtc_v2f2))]
pub fn calibrate(&mut self, mut clock_drift: f32, period: super::RtcCalibrationCyclePeriod) {
const RTC_CALR_MIN_PPM: f32 = -487.1;
const RTC_CALR_MAX_PPM: f32 = 488.5;
const RTC_CALR_RESOLUTION_PPM: f32 = 0.9537;
if clock_drift < RTC_CALR_MIN_PPM {
clock_drift = RTC_CALR_MIN_PPM;
} else if clock_drift > RTC_CALR_MAX_PPM {
clock_drift = RTC_CALR_MAX_PPM;
}
clock_drift = clock_drift / RTC_CALR_RESOLUTION_PPM;
self.write(false, |rtc| {
rtc.calr().write(|w| {
match period {
super::RtcCalibrationCyclePeriod::Seconds8 => {
w.set_calw8(stm32_metapac::rtc::vals::Calw8::EIGHT_SECOND);
}
super::RtcCalibrationCyclePeriod::Seconds16 => {
w.set_calw16(stm32_metapac::rtc::vals::Calw16::SIXTEEN_SECOND);
}
super::RtcCalibrationCyclePeriod::Seconds32 => {
// Set neither `calw8` nor `calw16` to use 32 seconds
}
}
// Extra pulses during calibration cycle period: CALP * 512 - CALM
//
// CALP sets whether pulses are added or omitted.
//
// CALM contains how many pulses (out of 512) are masked in a
// given calibration cycle period.
if clock_drift > 0.0 {
// Maximum (about 512.2) rounds to 512.
clock_drift += 0.5;
// When the offset is positive (0 to 512), the opposite of
// the offset (512 - offset) is masked, i.e. for the
// maximum offset (512), 0 pulses are masked.
w.set_calp(stm32_metapac::rtc::vals::Calp::INCREASEFREQ);
w.set_calm(512 - clock_drift as u16);
} else {
// Minimum (about -510.7) rounds to -511.
clock_drift -= 0.5;
// When the offset is negative or zero (-511 to 0),
// the absolute offset is masked, i.e. for the minimum
// offset (-511), 511 pulses are masked.
w.set_calp(stm32_metapac::rtc::vals::Calp::NOCHANGE);
w.set_calm((clock_drift * -1.0) as u16);
}
});
})
}
pub(super) fn write<F, R>(&mut self, init_mode: bool, f: F) -> R
where
F: FnOnce(&crate::pac::rtc::Rtc) -> R,
{
let r = RTC::regs();
// Disable write protection.
// This is safe, as we're only writin the correct and expected values.
r.wpr().write(|w| w.set_key(0xca));
r.wpr().write(|w| w.set_key(0x53));
// true if initf bit indicates RTC peripheral is in init mode
if init_mode && !r.isr().read().initf() {
// to update calendar date/time, time format, and prescaler configuration, RTC must be in init mode
r.isr().modify(|w| w.set_init(Init::INITMODE));
// wait till init state entered
// ~2 RTCCLK cycles
while !r.isr().read().initf() {}
}
let result = f(&r);
if init_mode {
r.isr().modify(|w| w.set_init(Init::FREERUNNINGMODE)); // Exits init mode
}
// Re-enable write protection.
// This is safe, as the field accepts the full range of 8-bit values.
r.wpr().write(|w| w.set_key(0xff));
result
}
}
impl sealed::Instance for crate::peripherals::RTC {
const BACKUP_REGISTER_COUNT: usize = 20;
fn enable_peripheral_clk() {
#[cfg(any(rtc_v2l4, rtc_v2wb))]
{
// enable peripheral clock for communication
crate::pac::RCC.apb1enr1().modify(|w| w.set_rtcapben(true));
// read to allow the pwr clock to enable
crate::pac::PWR.cr1().read();
}
#[cfg(any(rtc_v2f2))]
{
crate::pac::RCC.apb1enr().modify(|w| w.set_pwren(true));
crate::pac::PWR.cr().read();
}
}
fn read_backup_register(rtc: &Rtc, register: usize) -> Option<u32> {
if register < Self::BACKUP_REGISTER_COUNT {
Some(rtc.bkpr(register).read().bkp())
} else {
None
}
}
fn write_backup_register(rtc: &Rtc, register: usize, value: u32) {
if register < Self::BACKUP_REGISTER_COUNT {
rtc.bkpr(register).write(|w| w.set_bkp(value));
}
}
}