embassy/embassy-stm32/src/adc/v3.rs
2022-11-15 12:56:47 +01:00

237 lines
6.5 KiB
Rust

use embassy_hal_common::into_ref;
use embedded_hal_02::blocking::delay::DelayUs;
use crate::adc::{Adc, AdcPin, Instance, Resolution, SampleTime};
use crate::Peripheral;
/// Default VREF voltage used for sample conversion to millivolts.
pub const VREF_DEFAULT_MV: u32 = 3300;
/// VREF voltage used for factory calibration of VREFINTCAL register.
pub const VREF_CALIB_MV: u32 = 3000;
/// Sadly we cannot use `RccPeripheral::enable` since devices are quite inconsistent ADC clock
/// configuration.
fn enable() {
critical_section::with(|_| unsafe {
#[cfg(stm32h7)]
crate::pac::RCC.apb2enr().modify(|w| w.set_adcen(true));
#[cfg(stm32g0)]
crate::pac::RCC.apbenr2().modify(|w| w.set_adcen(true));
#[cfg(any(stm32l4, stm32l5, stm32wb))]
crate::pac::RCC.ahb2enr().modify(|w| w.set_adcen(true));
});
}
pub struct VrefInt;
impl<T: Instance> AdcPin<T> for VrefInt {}
impl<T: Instance> super::sealed::AdcPin<T> for VrefInt {
fn channel(&self) -> u8 {
#[cfg(not(stm32g0))]
let val = 0;
#[cfg(stm32g0)]
let val = 13;
val
}
}
pub struct Temperature;
impl<T: Instance> AdcPin<T> for Temperature {}
impl<T: Instance> super::sealed::AdcPin<T> for Temperature {
fn channel(&self) -> u8 {
#[cfg(not(stm32g0))]
let val = 17;
#[cfg(stm32g0)]
let val = 12;
val
}
}
pub struct Vbat;
impl<T: Instance> AdcPin<T> for Vbat {}
impl<T: Instance> super::sealed::AdcPin<T> for Vbat {
fn channel(&self) -> u8 {
#[cfg(not(stm32g0))]
let val = 18;
#[cfg(stm32g0)]
let val = 14;
val
}
}
impl<'d, T: Instance> Adc<'d, T> {
pub fn new(adc: impl Peripheral<P = T> + 'd, delay: &mut impl DelayUs<u32>) -> Self {
into_ref!(adc);
enable();
unsafe {
T::regs().cr().modify(|reg| {
#[cfg(not(adc_g0))]
reg.set_deeppwd(false);
reg.set_advregen(true);
});
#[cfg(adc_g0)]
T::regs().cfgr1().modify(|reg| {
reg.set_chselrmod(false);
});
}
delay.delay_us(20);
unsafe {
T::regs().cr().modify(|reg| {
reg.set_adcal(true);
});
while T::regs().cr().read().adcal() {
// spin
}
}
delay.delay_us(1);
Self {
adc,
sample_time: Default::default(),
}
}
pub fn enable_vrefint(&self, delay: &mut impl DelayUs<u32>) -> VrefInt {
unsafe {
T::common_regs().ccr().modify(|reg| {
reg.set_vrefen(true);
});
}
// "Table 24. Embedded internal voltage reference" states that it takes a maximum of 12 us
// to stabilize the internal voltage reference, we wait a little more.
// TODO: delay 15us
//cortex_m::asm::delay(20_000_000);
delay.delay_us(15);
VrefInt {}
}
pub fn enable_temperature(&self) -> Temperature {
unsafe {
T::common_regs().ccr().modify(|reg| {
reg.set_ch17sel(true);
});
}
Temperature {}
}
pub fn enable_vbat(&self) -> Vbat {
unsafe {
T::common_regs().ccr().modify(|reg| {
reg.set_ch18sel(true);
});
}
Vbat {}
}
pub fn set_sample_time(&mut self, sample_time: SampleTime) {
self.sample_time = sample_time;
}
pub fn set_resolution(&mut self, resolution: Resolution) {
unsafe {
#[cfg(not(stm32g0))]
T::regs().cfgr().modify(|reg| reg.set_res(resolution.into()));
#[cfg(stm32g0)]
T::regs().cfgr1().modify(|reg| reg.set_res(resolution.into()));
}
}
/*
/// Convert a raw sample from the `Temperature` to deg C
pub fn to_degrees_centigrade(sample: u16) -> f32 {
(130.0 - 30.0) / (VtempCal130::get().read() as f32 - VtempCal30::get().read() as f32)
* (sample as f32 - VtempCal30::get().read() as f32)
+ 30.0
}
*/
/// Perform a single conversion.
fn convert(&mut self) -> u16 {
unsafe {
T::regs().isr().modify(|reg| {
reg.set_eos(true);
reg.set_eoc(true);
});
// Start conversion
T::regs().cr().modify(|reg| {
reg.set_adstart(true);
});
while !T::regs().isr().read().eos() {
// spin
}
T::regs().dr().read().0 as u16
}
}
pub fn read(&mut self, pin: &mut impl AdcPin<T>) -> u16 {
unsafe {
// Make sure bits are off
while T::regs().cr().read().addis() {
// spin
}
// Enable ADC
T::regs().isr().modify(|reg| {
reg.set_adrdy(true);
});
T::regs().cr().modify(|reg| {
reg.set_aden(true);
});
while !T::regs().isr().read().adrdy() {
// spin
}
// Configure channel
Self::set_channel_sample_time(pin.channel(), self.sample_time);
// Select channel
#[cfg(not(stm32g0))]
T::regs().sqr1().write(|reg| reg.set_sq(0, pin.channel()));
#[cfg(stm32g0)]
T::regs().chselr().write(|reg| reg.set_chsel(1 << pin.channel()));
// Some models are affected by an erratum:
// If we perform conversions slower than 1 kHz, the first read ADC value can be
// corrupted, so we discard it and measure again.
//
// STM32L471xx: Section 2.7.3
// STM32G4: Section 2.7.3
#[cfg(any(rcc_l4, rcc_g4))]
let _ = self.convert();
let val = self.convert();
T::regs().cr().modify(|reg| reg.set_addis(true));
val
}
}
#[cfg(stm32g0)]
unsafe fn set_channel_sample_time(_ch: u8, sample_time: SampleTime) {
T::regs().smpr().modify(|reg| reg.set_smp1(sample_time.into()));
}
#[cfg(not(stm32g0))]
unsafe fn set_channel_sample_time(ch: u8, sample_time: SampleTime) {
let sample_time = sample_time.into();
if ch <= 9 {
T::regs().smpr1().modify(|reg| reg.set_smp(ch as _, sample_time));
} else {
T::regs().smpr2().modify(|reg| reg.set_smp((ch - 10) as _, sample_time));
}
}
}