embassy/embassy-rp/src/gpio.rs
pennae 972cdd4265 rp/adc: rewrite the module
- don't require an irq binding for blocking-only adc
- abstract adc pins into an AnyPin like interface, erasing the actual
  peripheral type at runtime.
- add pull-up/pull-down functions for adc pins
- add a test (mostly a copy of the example, to be honest)
- configure adc pads according to datasheet
- report conversion errors (although they seem exceedingly rare?)
- drop embedded-hal interfaces. embedded-hal channels can do neither
  AnyPin nor pullup/pulldown without encoding both into the type
2023-07-07 17:46:35 +02:00

1127 lines
30 KiB
Rust

#![macro_use]
use core::future::Future;
use core::pin::Pin as FuturePin;
use core::task::{Context, Poll};
use embassy_hal_common::{impl_peripheral, into_ref, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
use crate::interrupt::InterruptExt;
use crate::pac::common::{Reg, RW};
use crate::pac::SIO;
use crate::{interrupt, pac, peripherals, Peripheral, RegExt};
const PIN_COUNT: usize = 30;
const NEW_AW: AtomicWaker = AtomicWaker::new();
static INTERRUPT_WAKERS: [AtomicWaker; PIN_COUNT] = [NEW_AW; PIN_COUNT];
/// Represents a digital input or output level.
#[derive(Debug, Eq, PartialEq, Clone, Copy)]
pub enum Level {
Low,
High,
}
impl From<bool> for Level {
fn from(val: bool) -> Self {
match val {
true => Self::High,
false => Self::Low,
}
}
}
impl From<Level> for bool {
fn from(level: Level) -> bool {
match level {
Level::Low => false,
Level::High => true,
}
}
}
/// Represents a pull setting for an input.
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub enum Pull {
None,
Up,
Down,
}
/// Drive strength of an output
#[derive(Debug, Eq, PartialEq)]
pub enum Drive {
_2mA,
_4mA,
_8mA,
_12mA,
}
/// Slew rate of an output
#[derive(Debug, Eq, PartialEq)]
pub enum SlewRate {
Fast,
Slow,
}
/// A GPIO bank with up to 32 pins.
#[derive(Debug, Eq, PartialEq)]
pub enum Bank {
Bank0 = 0,
Qspi = 1,
}
pub struct Input<'d, T: Pin> {
pin: Flex<'d, T>,
}
impl<'d, T: Pin> Input<'d, T> {
#[inline]
pub fn new(pin: impl Peripheral<P = T> + 'd, pull: Pull) -> Self {
let mut pin = Flex::new(pin);
pin.set_as_input();
pin.set_pull(pull);
Self { pin }
}
#[inline]
pub fn is_high(&self) -> bool {
self.pin.is_high()
}
#[inline]
pub fn is_low(&self) -> bool {
self.pin.is_low()
}
/// Returns current pin level
#[inline]
pub fn get_level(&self) -> Level {
self.pin.get_level()
}
#[inline]
pub async fn wait_for_high(&mut self) {
self.pin.wait_for_high().await;
}
#[inline]
pub async fn wait_for_low(&mut self) {
self.pin.wait_for_low().await;
}
#[inline]
pub async fn wait_for_rising_edge(&mut self) {
self.pin.wait_for_rising_edge().await;
}
#[inline]
pub async fn wait_for_falling_edge(&mut self) {
self.pin.wait_for_falling_edge().await;
}
#[inline]
pub async fn wait_for_any_edge(&mut self) {
self.pin.wait_for_any_edge().await;
}
}
/// Interrupt trigger levels.
#[derive(Debug, Eq, PartialEq, Copy, Clone)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum InterruptTrigger {
LevelLow,
LevelHigh,
EdgeLow,
EdgeHigh,
AnyEdge,
}
pub(crate) unsafe fn init() {
interrupt::IO_IRQ_BANK0.disable();
interrupt::IO_IRQ_BANK0.set_priority(interrupt::Priority::P3);
interrupt::IO_IRQ_BANK0.enable();
}
#[cfg(feature = "rt")]
#[interrupt]
fn IO_IRQ_BANK0() {
let cpu = SIO.cpuid().read() as usize;
// There are two sets of interrupt registers, one for cpu0 and one for cpu1
// and here we are selecting the set that belongs to the currently executing
// cpu.
let proc_intx: pac::io::Int = pac::IO_BANK0.int_proc(cpu);
for pin in 0..PIN_COUNT {
// There are 4 raw interrupt status registers, PROCx_INTS0, PROCx_INTS1,
// PROCx_INTS2, and PROCx_INTS3, and we are selecting the one that the
// current pin belongs to.
let intsx = proc_intx.ints(pin / 8);
// The status register is divided into groups of four, one group for
// each pin. Each group consists of four trigger levels LEVEL_LOW,
// LEVEL_HIGH, EDGE_LOW, and EDGE_HIGH for each pin.
let pin_group = (pin % 8) as usize;
let event = (intsx.read().0 >> pin_group * 4) & 0xf as u32;
// no more than one event can be awaited per pin at any given time, so
// we can just clear all interrupt enables for that pin without having
// to check which event was signalled.
if event != 0 {
proc_intx.inte(pin / 8).write_clear(|w| {
w.set_edge_high(pin_group, true);
w.set_edge_low(pin_group, true);
w.set_level_high(pin_group, true);
w.set_level_low(pin_group, true);
});
INTERRUPT_WAKERS[pin as usize].wake();
}
}
}
#[must_use = "futures do nothing unless you `.await` or poll them"]
struct InputFuture<'a, T: Pin> {
pin: PeripheralRef<'a, T>,
level: InterruptTrigger,
}
impl<'d, T: Pin> InputFuture<'d, T> {
pub fn new(pin: impl Peripheral<P = T> + 'd, level: InterruptTrigger) -> Self {
into_ref!(pin);
let pin_group = (pin.pin() % 8) as usize;
// first, clear the INTR register bits. without this INTR will still
// contain reports of previous edges, causing the IRQ to fire early
// on stale state. clearing these means that we can only detect edges
// that occur *after* the clear happened, but since both this and the
// alternative are fundamentally racy it's probably fine.
// (the alternative being checking the current level and waiting for
// its inverse, but that requires reading the current level and thus
// missing anything that happened before the level was read.)
pac::IO_BANK0.intr(pin.pin() as usize / 8).write(|w| {
w.set_edge_high(pin_group, true);
w.set_edge_low(pin_group, true);
});
// Each INTR register is divided into 8 groups, one group for each
// pin, and each group consists of LEVEL_LOW, LEVEL_HIGH, EDGE_LOW,
// and EGDE_HIGH.
pin.int_proc()
.inte((pin.pin() / 8) as usize)
.write_set(|w| match level {
InterruptTrigger::LevelHigh => {
trace!("InputFuture::new enable LevelHigh for pin {}", pin.pin());
w.set_level_high(pin_group, true);
}
InterruptTrigger::LevelLow => {
w.set_level_low(pin_group, true);
}
InterruptTrigger::EdgeHigh => {
w.set_edge_high(pin_group, true);
}
InterruptTrigger::EdgeLow => {
w.set_edge_low(pin_group, true);
}
InterruptTrigger::AnyEdge => {
w.set_edge_high(pin_group, true);
w.set_edge_low(pin_group, true);
}
});
Self { pin, level }
}
}
impl<'d, T: Pin> Future for InputFuture<'d, T> {
type Output = ();
fn poll(self: FuturePin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
// We need to register/re-register the waker for each poll because any
// calls to wake will deregister the waker.
INTERRUPT_WAKERS[self.pin.pin() as usize].register(cx.waker());
// self.int_proc() will get the register offset for the current cpu,
// then we want to access the interrupt enable register for our
// pin (there are 4 of these PROC0_INTE0, PROC0_INTE1, PROC0_INTE2, and
// PROC0_INTE3 per cpu).
let inte: pac::io::regs::Int = self.pin.int_proc().inte((self.pin.pin() / 8) as usize).read();
// The register is divided into groups of four, one group for
// each pin. Each group consists of four trigger levels LEVEL_LOW,
// LEVEL_HIGH, EDGE_LOW, and EDGE_HIGH for each pin.
let pin_group = (self.pin.pin() % 8) as usize;
// since the interrupt handler clears all INTE flags we'll check that
// all have been cleared and unconditionally return Ready(()) if so.
// we don't need further handshaking since only a single event wait
// is possible for any given pin at any given time.
if !inte.edge_high(pin_group)
&& !inte.edge_low(pin_group)
&& !inte.level_high(pin_group)
&& !inte.level_low(pin_group)
{
trace!(
"{:?} for pin {} was cleared, return Poll::Ready",
self.level,
self.pin.pin()
);
return Poll::Ready(());
}
trace!("InputFuture::poll return Poll::Pending");
Poll::Pending
}
}
pub struct Output<'d, T: Pin> {
pin: Flex<'d, T>,
}
impl<'d, T: Pin> Output<'d, T> {
#[inline]
pub fn new(pin: impl Peripheral<P = T> + 'd, initial_output: Level) -> Self {
let mut pin = Flex::new(pin);
match initial_output {
Level::High => pin.set_high(),
Level::Low => pin.set_low(),
}
pin.set_as_output();
Self { pin }
}
/// Set the output as high.
#[inline]
pub fn set_high(&mut self) {
self.pin.set_high()
}
/// Set the output as low.
#[inline]
pub fn set_low(&mut self) {
self.pin.set_low()
}
/// Set the output level.
#[inline]
pub fn set_level(&mut self, level: Level) {
self.pin.set_level(level)
}
/// Is the output pin set as high?
#[inline]
pub fn is_set_high(&self) -> bool {
self.pin.is_set_high()
}
/// Is the output pin set as low?
#[inline]
pub fn is_set_low(&self) -> bool {
self.pin.is_set_low()
}
/// What level output is set to
#[inline]
pub fn get_output_level(&self) -> Level {
self.pin.get_output_level()
}
/// Toggle pin output
#[inline]
pub fn toggle(&mut self) {
self.pin.toggle()
}
}
/// GPIO output open-drain.
pub struct OutputOpenDrain<'d, T: Pin> {
pin: Flex<'d, T>,
}
impl<'d, T: Pin> OutputOpenDrain<'d, T> {
#[inline]
pub fn new(pin: impl Peripheral<P = T> + 'd, initial_output: Level) -> Self {
let mut pin = Flex::new(pin);
pin.set_low();
match initial_output {
Level::High => pin.set_as_input(),
Level::Low => pin.set_as_output(),
}
Self { pin }
}
/// Set the output as high.
#[inline]
pub fn set_high(&mut self) {
// For Open Drain High, disable the output pin.
self.pin.set_as_input()
}
/// Set the output as low.
#[inline]
pub fn set_low(&mut self) {
// For Open Drain Low, enable the output pin.
self.pin.set_as_output()
}
/// Set the output level.
#[inline]
pub fn set_level(&mut self, level: Level) {
match level {
Level::Low => self.set_low(),
Level::High => self.set_high(),
}
}
/// Is the output level high?
#[inline]
pub fn is_set_high(&self) -> bool {
!self.is_set_low()
}
/// Is the output level low?
#[inline]
pub fn is_set_low(&self) -> bool {
self.pin.is_set_as_output()
}
/// What level output is set to
#[inline]
pub fn get_output_level(&self) -> Level {
self.is_set_high().into()
}
/// Toggle pin output
#[inline]
pub fn toggle(&mut self) {
self.pin.toggle_set_as_output()
}
#[inline]
pub fn is_high(&self) -> bool {
self.pin.is_high()
}
#[inline]
pub fn is_low(&self) -> bool {
self.pin.is_low()
}
/// Returns current pin level
#[inline]
pub fn get_level(&self) -> Level {
self.is_high().into()
}
#[inline]
pub async fn wait_for_high(&mut self) {
self.pin.wait_for_high().await;
}
#[inline]
pub async fn wait_for_low(&mut self) {
self.pin.wait_for_low().await;
}
#[inline]
pub async fn wait_for_rising_edge(&mut self) {
self.pin.wait_for_rising_edge().await;
}
#[inline]
pub async fn wait_for_falling_edge(&mut self) {
self.pin.wait_for_falling_edge().await;
}
#[inline]
pub async fn wait_for_any_edge(&mut self) {
self.pin.wait_for_any_edge().await;
}
}
/// GPIO flexible pin.
///
/// This pin can be either an input or output pin. The output level register bit will remain
/// set while not in output mode, so the pin's level will be 'remembered' when it is not in output
/// mode.
pub struct Flex<'d, T: Pin> {
pin: PeripheralRef<'d, T>,
}
impl<'d, T: Pin> Flex<'d, T> {
#[inline]
pub fn new(pin: impl Peripheral<P = T> + 'd) -> Self {
into_ref!(pin);
pin.pad_ctrl().write(|w| {
w.set_ie(true);
});
pin.io().ctrl().write(|w| {
w.set_funcsel(pac::io::vals::Gpio0ctrlFuncsel::SIO_0 as _);
});
Self { pin }
}
#[inline]
fn bit(&self) -> u32 {
1 << self.pin.pin()
}
/// Set the pin's pull.
#[inline]
pub fn set_pull(&mut self, pull: Pull) {
self.pin.pad_ctrl().modify(|w| {
w.set_ie(true);
let (pu, pd) = match pull {
Pull::Up => (true, false),
Pull::Down => (false, true),
Pull::None => (false, false),
};
w.set_pue(pu);
w.set_pde(pd);
});
}
/// Set the pin's drive strength.
#[inline]
pub fn set_drive_strength(&mut self, strength: Drive) {
self.pin.pad_ctrl().modify(|w| {
w.set_drive(match strength {
Drive::_2mA => pac::pads::vals::Drive::_2MA,
Drive::_4mA => pac::pads::vals::Drive::_4MA,
Drive::_8mA => pac::pads::vals::Drive::_8MA,
Drive::_12mA => pac::pads::vals::Drive::_12MA,
});
});
}
// Set the pin's slew rate.
#[inline]
pub fn set_slew_rate(&mut self, slew_rate: SlewRate) {
self.pin.pad_ctrl().modify(|w| {
w.set_slewfast(slew_rate == SlewRate::Fast);
});
}
/// Put the pin into input mode.
///
/// The pull setting is left unchanged.
#[inline]
pub fn set_as_input(&mut self) {
self.pin.sio_oe().value_clr().write_value(self.bit())
}
/// Put the pin into output mode.
///
/// The pin level will be whatever was set before (or low by default). If you want it to begin
/// at a specific level, call `set_high`/`set_low` on the pin first.
#[inline]
pub fn set_as_output(&mut self) {
self.pin.sio_oe().value_set().write_value(self.bit())
}
#[inline]
fn is_set_as_output(&self) -> bool {
(self.pin.sio_oe().value().read() & self.bit()) != 0
}
#[inline]
pub fn toggle_set_as_output(&mut self) {
self.pin.sio_oe().value_xor().write_value(self.bit())
}
#[inline]
pub fn is_high(&self) -> bool {
!self.is_low()
}
#[inline]
pub fn is_low(&self) -> bool {
self.pin.sio_in().read() & self.bit() == 0
}
/// Returns current pin level
#[inline]
pub fn get_level(&self) -> Level {
self.is_high().into()
}
/// Set the output as high.
#[inline]
pub fn set_high(&mut self) {
self.pin.sio_out().value_set().write_value(self.bit())
}
/// Set the output as low.
#[inline]
pub fn set_low(&mut self) {
self.pin.sio_out().value_clr().write_value(self.bit())
}
/// Set the output level.
#[inline]
pub fn set_level(&mut self, level: Level) {
match level {
Level::Low => self.set_low(),
Level::High => self.set_high(),
}
}
/// Is the output level high?
#[inline]
pub fn is_set_high(&self) -> bool {
(self.pin.sio_out().value().read() & self.bit()) == 0
}
/// Is the output level low?
#[inline]
pub fn is_set_low(&self) -> bool {
!self.is_set_high()
}
/// What level output is set to
#[inline]
pub fn get_output_level(&self) -> Level {
self.is_set_high().into()
}
/// Toggle pin output
#[inline]
pub fn toggle(&mut self) {
self.pin.sio_out().value_xor().write_value(self.bit())
}
#[inline]
pub async fn wait_for_high(&mut self) {
InputFuture::new(&mut self.pin, InterruptTrigger::LevelHigh).await;
}
#[inline]
pub async fn wait_for_low(&mut self) {
InputFuture::new(&mut self.pin, InterruptTrigger::LevelLow).await;
}
#[inline]
pub async fn wait_for_rising_edge(&mut self) {
InputFuture::new(&mut self.pin, InterruptTrigger::EdgeHigh).await;
}
#[inline]
pub async fn wait_for_falling_edge(&mut self) {
InputFuture::new(&mut self.pin, InterruptTrigger::EdgeLow).await;
}
#[inline]
pub async fn wait_for_any_edge(&mut self) {
InputFuture::new(&mut self.pin, InterruptTrigger::AnyEdge).await;
}
}
impl<'d, T: Pin> Drop for Flex<'d, T> {
#[inline]
fn drop(&mut self) {
self.pin.pad_ctrl().write(|_| {});
self.pin.io().ctrl().write(|w| {
w.set_funcsel(pac::io::vals::Gpio0ctrlFuncsel::NULL as _);
});
}
}
pub(crate) mod sealed {
use super::*;
pub trait Pin: Sized {
fn pin_bank(&self) -> u8;
#[inline]
fn _pin(&self) -> u8 {
self.pin_bank() & 0x1f
}
#[inline]
fn _bank(&self) -> Bank {
if self.pin_bank() & 0x20 == 0 {
Bank::Bank0
} else {
Bank::Qspi
}
}
fn io(&self) -> pac::io::Gpio {
let block = match self._bank() {
Bank::Bank0 => crate::pac::IO_BANK0,
Bank::Qspi => crate::pac::IO_QSPI,
};
block.gpio(self._pin() as _)
}
fn pad_ctrl(&self) -> Reg<pac::pads::regs::GpioCtrl, RW> {
let block = match self._bank() {
Bank::Bank0 => crate::pac::PADS_BANK0,
Bank::Qspi => crate::pac::PADS_QSPI,
};
block.gpio(self._pin() as _)
}
fn sio_out(&self) -> pac::sio::Gpio {
SIO.gpio_out(self._bank() as _)
}
fn sio_oe(&self) -> pac::sio::Gpio {
SIO.gpio_oe(self._bank() as _)
}
fn sio_in(&self) -> Reg<u32, RW> {
SIO.gpio_in(self._bank() as _)
}
fn int_proc(&self) -> pac::io::Int {
let io_block = match self._bank() {
Bank::Bank0 => crate::pac::IO_BANK0,
Bank::Qspi => crate::pac::IO_QSPI,
};
let proc = SIO.cpuid().read();
io_block.int_proc(proc as _)
}
}
}
pub trait Pin: Peripheral<P = Self> + Into<AnyPin> + sealed::Pin + Sized + 'static {
/// Degrade to a generic pin struct
fn degrade(self) -> AnyPin {
AnyPin {
pin_bank: self.pin_bank(),
}
}
/// Returns the pin number within a bank
#[inline]
fn pin(&self) -> u8 {
self._pin()
}
/// Returns the bank of this pin
#[inline]
fn bank(&self) -> Bank {
self._bank()
}
}
pub struct AnyPin {
pin_bank: u8,
}
impl_peripheral!(AnyPin);
impl Pin for AnyPin {}
impl sealed::Pin for AnyPin {
fn pin_bank(&self) -> u8 {
self.pin_bank
}
}
// ==========================
macro_rules! impl_pin {
($name:ident, $bank:expr, $pin_num:expr) => {
impl Pin for peripherals::$name {}
impl sealed::Pin for peripherals::$name {
#[inline]
fn pin_bank(&self) -> u8 {
($bank as u8) * 32 + $pin_num
}
}
impl From<peripherals::$name> for crate::gpio::AnyPin {
fn from(val: peripherals::$name) -> Self {
crate::gpio::Pin::degrade(val)
}
}
};
}
impl_pin!(PIN_0, Bank::Bank0, 0);
impl_pin!(PIN_1, Bank::Bank0, 1);
impl_pin!(PIN_2, Bank::Bank0, 2);
impl_pin!(PIN_3, Bank::Bank0, 3);
impl_pin!(PIN_4, Bank::Bank0, 4);
impl_pin!(PIN_5, Bank::Bank0, 5);
impl_pin!(PIN_6, Bank::Bank0, 6);
impl_pin!(PIN_7, Bank::Bank0, 7);
impl_pin!(PIN_8, Bank::Bank0, 8);
impl_pin!(PIN_9, Bank::Bank0, 9);
impl_pin!(PIN_10, Bank::Bank0, 10);
impl_pin!(PIN_11, Bank::Bank0, 11);
impl_pin!(PIN_12, Bank::Bank0, 12);
impl_pin!(PIN_13, Bank::Bank0, 13);
impl_pin!(PIN_14, Bank::Bank0, 14);
impl_pin!(PIN_15, Bank::Bank0, 15);
impl_pin!(PIN_16, Bank::Bank0, 16);
impl_pin!(PIN_17, Bank::Bank0, 17);
impl_pin!(PIN_18, Bank::Bank0, 18);
impl_pin!(PIN_19, Bank::Bank0, 19);
impl_pin!(PIN_20, Bank::Bank0, 20);
impl_pin!(PIN_21, Bank::Bank0, 21);
impl_pin!(PIN_22, Bank::Bank0, 22);
impl_pin!(PIN_23, Bank::Bank0, 23);
impl_pin!(PIN_24, Bank::Bank0, 24);
impl_pin!(PIN_25, Bank::Bank0, 25);
impl_pin!(PIN_26, Bank::Bank0, 26);
impl_pin!(PIN_27, Bank::Bank0, 27);
impl_pin!(PIN_28, Bank::Bank0, 28);
impl_pin!(PIN_29, Bank::Bank0, 29);
impl_pin!(PIN_QSPI_SCLK, Bank::Qspi, 0);
impl_pin!(PIN_QSPI_SS, Bank::Qspi, 1);
impl_pin!(PIN_QSPI_SD0, Bank::Qspi, 2);
impl_pin!(PIN_QSPI_SD1, Bank::Qspi, 3);
impl_pin!(PIN_QSPI_SD2, Bank::Qspi, 4);
impl_pin!(PIN_QSPI_SD3, Bank::Qspi, 5);
// ====================
mod eh02 {
use core::convert::Infallible;
use super::*;
impl<'d, T: Pin> embedded_hal_02::digital::v2::InputPin for Input<'d, T> {
type Error = Infallible;
fn is_high(&self) -> Result<bool, Self::Error> {
Ok(self.is_high())
}
fn is_low(&self) -> Result<bool, Self::Error> {
Ok(self.is_low())
}
}
impl<'d, T: Pin> embedded_hal_02::digital::v2::OutputPin for Output<'d, T> {
type Error = Infallible;
fn set_high(&mut self) -> Result<(), Self::Error> {
Ok(self.set_high())
}
fn set_low(&mut self) -> Result<(), Self::Error> {
Ok(self.set_low())
}
}
impl<'d, T: Pin> embedded_hal_02::digital::v2::StatefulOutputPin for Output<'d, T> {
fn is_set_high(&self) -> Result<bool, Self::Error> {
Ok(self.is_set_high())
}
fn is_set_low(&self) -> Result<bool, Self::Error> {
Ok(self.is_set_low())
}
}
impl<'d, T: Pin> embedded_hal_02::digital::v2::ToggleableOutputPin for Output<'d, T> {
type Error = Infallible;
#[inline]
fn toggle(&mut self) -> Result<(), Self::Error> {
Ok(self.toggle())
}
}
impl<'d, T: Pin> embedded_hal_02::digital::v2::InputPin for OutputOpenDrain<'d, T> {
type Error = Infallible;
fn is_high(&self) -> Result<bool, Self::Error> {
Ok(self.is_high())
}
fn is_low(&self) -> Result<bool, Self::Error> {
Ok(self.is_low())
}
}
impl<'d, T: Pin> embedded_hal_02::digital::v2::OutputPin for OutputOpenDrain<'d, T> {
type Error = Infallible;
#[inline]
fn set_high(&mut self) -> Result<(), Self::Error> {
Ok(self.set_high())
}
#[inline]
fn set_low(&mut self) -> Result<(), Self::Error> {
Ok(self.set_low())
}
}
impl<'d, T: Pin> embedded_hal_02::digital::v2::StatefulOutputPin for OutputOpenDrain<'d, T> {
fn is_set_high(&self) -> Result<bool, Self::Error> {
Ok(self.is_set_high())
}
fn is_set_low(&self) -> Result<bool, Self::Error> {
Ok(self.is_set_low())
}
}
impl<'d, T: Pin> embedded_hal_02::digital::v2::ToggleableOutputPin for OutputOpenDrain<'d, T> {
type Error = Infallible;
#[inline]
fn toggle(&mut self) -> Result<(), Self::Error> {
Ok(self.toggle())
}
}
impl<'d, T: Pin> embedded_hal_02::digital::v2::InputPin for Flex<'d, T> {
type Error = Infallible;
fn is_high(&self) -> Result<bool, Self::Error> {
Ok(self.is_high())
}
fn is_low(&self) -> Result<bool, Self::Error> {
Ok(self.is_low())
}
}
impl<'d, T: Pin> embedded_hal_02::digital::v2::OutputPin for Flex<'d, T> {
type Error = Infallible;
fn set_high(&mut self) -> Result<(), Self::Error> {
Ok(self.set_high())
}
fn set_low(&mut self) -> Result<(), Self::Error> {
Ok(self.set_low())
}
}
impl<'d, T: Pin> embedded_hal_02::digital::v2::StatefulOutputPin for Flex<'d, T> {
fn is_set_high(&self) -> Result<bool, Self::Error> {
Ok(self.is_set_high())
}
fn is_set_low(&self) -> Result<bool, Self::Error> {
Ok(self.is_set_low())
}
}
impl<'d, T: Pin> embedded_hal_02::digital::v2::ToggleableOutputPin for Flex<'d, T> {
type Error = Infallible;
#[inline]
fn toggle(&mut self) -> Result<(), Self::Error> {
Ok(self.toggle())
}
}
}
#[cfg(feature = "unstable-traits")]
mod eh1 {
use core::convert::Infallible;
use super::*;
impl<'d, T: Pin> embedded_hal_1::digital::ErrorType for Input<'d, T> {
type Error = Infallible;
}
impl<'d, T: Pin> embedded_hal_1::digital::InputPin for Input<'d, T> {
fn is_high(&self) -> Result<bool, Self::Error> {
Ok(self.is_high())
}
fn is_low(&self) -> Result<bool, Self::Error> {
Ok(self.is_low())
}
}
impl<'d, T: Pin> embedded_hal_1::digital::ErrorType for Output<'d, T> {
type Error = Infallible;
}
impl<'d, T: Pin> embedded_hal_1::digital::OutputPin for Output<'d, T> {
fn set_high(&mut self) -> Result<(), Self::Error> {
Ok(self.set_high())
}
fn set_low(&mut self) -> Result<(), Self::Error> {
Ok(self.set_low())
}
}
impl<'d, T: Pin> embedded_hal_1::digital::StatefulOutputPin for Output<'d, T> {
fn is_set_high(&self) -> Result<bool, Self::Error> {
Ok(self.is_set_high())
}
fn is_set_low(&self) -> Result<bool, Self::Error> {
Ok(self.is_set_low())
}
}
impl<'d, T: Pin> embedded_hal_1::digital::ToggleableOutputPin for Output<'d, T> {
fn toggle(&mut self) -> Result<(), Self::Error> {
Ok(self.toggle())
}
}
impl<'d, T: Pin> embedded_hal_1::digital::ErrorType for OutputOpenDrain<'d, T> {
type Error = Infallible;
}
impl<'d, T: Pin> embedded_hal_1::digital::OutputPin for OutputOpenDrain<'d, T> {
fn set_high(&mut self) -> Result<(), Self::Error> {
Ok(self.set_high())
}
fn set_low(&mut self) -> Result<(), Self::Error> {
Ok(self.set_low())
}
}
impl<'d, T: Pin> embedded_hal_1::digital::StatefulOutputPin for OutputOpenDrain<'d, T> {
fn is_set_high(&self) -> Result<bool, Self::Error> {
Ok(self.is_set_high())
}
fn is_set_low(&self) -> Result<bool, Self::Error> {
Ok(self.is_set_low())
}
}
impl<'d, T: Pin> embedded_hal_1::digital::ToggleableOutputPin for OutputOpenDrain<'d, T> {
fn toggle(&mut self) -> Result<(), Self::Error> {
Ok(self.toggle())
}
}
impl<'d, T: Pin> embedded_hal_1::digital::InputPin for OutputOpenDrain<'d, T> {
fn is_high(&self) -> Result<bool, Self::Error> {
Ok(self.is_high())
}
fn is_low(&self) -> Result<bool, Self::Error> {
Ok(self.is_low())
}
}
impl<'d, T: Pin> embedded_hal_1::digital::ErrorType for Flex<'d, T> {
type Error = Infallible;
}
impl<'d, T: Pin> embedded_hal_1::digital::InputPin for Flex<'d, T> {
fn is_high(&self) -> Result<bool, Self::Error> {
Ok(self.is_high())
}
fn is_low(&self) -> Result<bool, Self::Error> {
Ok(self.is_low())
}
}
impl<'d, T: Pin> embedded_hal_1::digital::OutputPin for Flex<'d, T> {
fn set_high(&mut self) -> Result<(), Self::Error> {
Ok(self.set_high())
}
fn set_low(&mut self) -> Result<(), Self::Error> {
Ok(self.set_low())
}
}
impl<'d, T: Pin> embedded_hal_1::digital::StatefulOutputPin for Flex<'d, T> {
fn is_set_high(&self) -> Result<bool, Self::Error> {
Ok(self.is_set_high())
}
fn is_set_low(&self) -> Result<bool, Self::Error> {
Ok(self.is_set_low())
}
}
impl<'d, T: Pin> embedded_hal_1::digital::ToggleableOutputPin for Flex<'d, T> {
fn toggle(&mut self) -> Result<(), Self::Error> {
Ok(self.toggle())
}
}
#[cfg(feature = "nightly")]
impl<'d, T: Pin> embedded_hal_async::digital::Wait for Flex<'d, T> {
async fn wait_for_high(&mut self) -> Result<(), Self::Error> {
self.wait_for_high().await;
Ok(())
}
async fn wait_for_low(&mut self) -> Result<(), Self::Error> {
self.wait_for_low().await;
Ok(())
}
async fn wait_for_rising_edge(&mut self) -> Result<(), Self::Error> {
self.wait_for_rising_edge().await;
Ok(())
}
async fn wait_for_falling_edge(&mut self) -> Result<(), Self::Error> {
self.wait_for_falling_edge().await;
Ok(())
}
async fn wait_for_any_edge(&mut self) -> Result<(), Self::Error> {
self.wait_for_any_edge().await;
Ok(())
}
}
#[cfg(feature = "nightly")]
impl<'d, T: Pin> embedded_hal_async::digital::Wait for Input<'d, T> {
async fn wait_for_high(&mut self) -> Result<(), Self::Error> {
self.wait_for_high().await;
Ok(())
}
async fn wait_for_low(&mut self) -> Result<(), Self::Error> {
self.wait_for_low().await;
Ok(())
}
async fn wait_for_rising_edge(&mut self) -> Result<(), Self::Error> {
self.wait_for_rising_edge().await;
Ok(())
}
async fn wait_for_falling_edge(&mut self) -> Result<(), Self::Error> {
self.wait_for_falling_edge().await;
Ok(())
}
async fn wait_for_any_edge(&mut self) -> Result<(), Self::Error> {
self.wait_for_any_edge().await;
Ok(())
}
}
#[cfg(feature = "nightly")]
impl<'d, T: Pin> embedded_hal_async::digital::Wait for OutputOpenDrain<'d, T> {
async fn wait_for_high(&mut self) -> Result<(), Self::Error> {
self.wait_for_high().await;
Ok(())
}
async fn wait_for_low(&mut self) -> Result<(), Self::Error> {
self.wait_for_low().await;
Ok(())
}
async fn wait_for_rising_edge(&mut self) -> Result<(), Self::Error> {
self.wait_for_rising_edge().await;
Ok(())
}
async fn wait_for_falling_edge(&mut self) -> Result<(), Self::Error> {
self.wait_for_falling_edge().await;
Ok(())
}
async fn wait_for_any_edge(&mut self) -> Result<(), Self::Error> {
self.wait_for_any_edge().await;
Ok(())
}
}
}