- Move typelevel interrupts to a special-purpose mod: `embassy_xx::interrupt::typelevel`. - Reexport the PAC interrupt enum in `embassy_xx::interrupt`. This has a few advantages: - The `embassy_xx::interrupt` module is now more "standard". - It works with `cortex-m` functions for manipulating interrupts, for example. - It works with RTIC. - the interrupt enum allows holding value that can be "any interrupt at runtime", this can't be done with typelevel irqs. - When "const-generics on enums" is stable, we can remove the typelevel interrupts without disruptive changes to `embassy_xx::interrupt`.
1075 lines
32 KiB
Rust
1075 lines
32 KiB
Rust
use core::cmp;
|
|
use core::future::poll_fn;
|
|
use core::marker::PhantomData;
|
|
use core::task::Poll;
|
|
|
|
use embassy_embedded_hal::SetConfig;
|
|
use embassy_hal_common::drop::OnDrop;
|
|
use embassy_hal_common::{into_ref, PeripheralRef};
|
|
use embassy_sync::waitqueue::AtomicWaker;
|
|
|
|
use crate::dma::{NoDma, Transfer};
|
|
use crate::gpio::sealed::AFType;
|
|
use crate::gpio::Pull;
|
|
use crate::i2c::{Error, Instance, SclPin, SdaPin};
|
|
use crate::interrupt::typelevel::Interrupt;
|
|
use crate::pac::i2c;
|
|
use crate::time::Hertz;
|
|
use crate::{interrupt, Peripheral};
|
|
|
|
/// Interrupt handler.
|
|
pub struct InterruptHandler<T: Instance> {
|
|
_phantom: PhantomData<T>,
|
|
}
|
|
|
|
impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
|
|
unsafe fn on_interrupt() {
|
|
let regs = T::regs();
|
|
let isr = regs.isr().read();
|
|
|
|
if isr.tcr() || isr.tc() {
|
|
T::state().waker.wake();
|
|
}
|
|
// The flag can only be cleared by writting to nbytes, we won't do that here, so disable
|
|
// the interrupt
|
|
critical_section::with(|_| {
|
|
regs.cr1().modify(|w| w.set_tcie(false));
|
|
});
|
|
}
|
|
}
|
|
|
|
#[non_exhaustive]
|
|
#[derive(Copy, Clone)]
|
|
pub struct Config {
|
|
pub sda_pullup: bool,
|
|
pub scl_pullup: bool,
|
|
}
|
|
|
|
impl Default for Config {
|
|
fn default() -> Self {
|
|
Self {
|
|
sda_pullup: false,
|
|
scl_pullup: false,
|
|
}
|
|
}
|
|
}
|
|
|
|
pub struct State {
|
|
waker: AtomicWaker,
|
|
}
|
|
|
|
impl State {
|
|
pub(crate) const fn new() -> Self {
|
|
Self {
|
|
waker: AtomicWaker::new(),
|
|
}
|
|
}
|
|
}
|
|
|
|
pub struct I2c<'d, T: Instance, TXDMA = NoDma, RXDMA = NoDma> {
|
|
_peri: PeripheralRef<'d, T>,
|
|
tx_dma: PeripheralRef<'d, TXDMA>,
|
|
#[allow(dead_code)]
|
|
rx_dma: PeripheralRef<'d, RXDMA>,
|
|
}
|
|
|
|
impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
|
pub fn new(
|
|
peri: impl Peripheral<P = T> + 'd,
|
|
scl: impl Peripheral<P = impl SclPin<T>> + 'd,
|
|
sda: impl Peripheral<P = impl SdaPin<T>> + 'd,
|
|
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
|
|
tx_dma: impl Peripheral<P = TXDMA> + 'd,
|
|
rx_dma: impl Peripheral<P = RXDMA> + 'd,
|
|
freq: Hertz,
|
|
config: Config,
|
|
) -> Self {
|
|
into_ref!(peri, scl, sda, tx_dma, rx_dma);
|
|
|
|
T::enable();
|
|
T::reset();
|
|
|
|
unsafe {
|
|
scl.set_as_af_pull(
|
|
scl.af_num(),
|
|
AFType::OutputOpenDrain,
|
|
match config.scl_pullup {
|
|
true => Pull::Up,
|
|
false => Pull::None,
|
|
},
|
|
);
|
|
sda.set_as_af_pull(
|
|
sda.af_num(),
|
|
AFType::OutputOpenDrain,
|
|
match config.sda_pullup {
|
|
true => Pull::Up,
|
|
false => Pull::None,
|
|
},
|
|
);
|
|
}
|
|
|
|
unsafe {
|
|
T::regs().cr1().modify(|reg| {
|
|
reg.set_pe(false);
|
|
reg.set_anfoff(false);
|
|
});
|
|
}
|
|
|
|
let timings = Timings::new(T::frequency(), freq.into());
|
|
|
|
unsafe {
|
|
T::regs().timingr().write(|reg| {
|
|
reg.set_presc(timings.prescale);
|
|
reg.set_scll(timings.scll);
|
|
reg.set_sclh(timings.sclh);
|
|
reg.set_sdadel(timings.sdadel);
|
|
reg.set_scldel(timings.scldel);
|
|
});
|
|
}
|
|
|
|
unsafe {
|
|
T::regs().cr1().modify(|reg| {
|
|
reg.set_pe(true);
|
|
});
|
|
}
|
|
|
|
T::Interrupt::unpend();
|
|
unsafe { T::Interrupt::enable() };
|
|
|
|
Self {
|
|
_peri: peri,
|
|
tx_dma,
|
|
rx_dma,
|
|
}
|
|
}
|
|
|
|
fn master_stop(&mut self) {
|
|
unsafe {
|
|
T::regs().cr2().write(|w| w.set_stop(true));
|
|
}
|
|
}
|
|
|
|
unsafe fn master_read(
|
|
address: u8,
|
|
length: usize,
|
|
stop: Stop,
|
|
reload: bool,
|
|
restart: bool,
|
|
check_timeout: impl Fn() -> Result<(), Error>,
|
|
) -> Result<(), Error> {
|
|
assert!(length < 256);
|
|
|
|
if !restart {
|
|
// Wait for any previous address sequence to end
|
|
// automatically. This could be up to 50% of a bus
|
|
// cycle (ie. up to 0.5/freq)
|
|
while T::regs().cr2().read().start() {
|
|
check_timeout()?;
|
|
}
|
|
}
|
|
|
|
// Set START and prepare to receive bytes into
|
|
// `buffer`. The START bit can be set even if the bus
|
|
// is BUSY or I2C is in slave mode.
|
|
|
|
let reload = if reload {
|
|
i2c::vals::Reload::NOTCOMPLETED
|
|
} else {
|
|
i2c::vals::Reload::COMPLETED
|
|
};
|
|
|
|
T::regs().cr2().modify(|w| {
|
|
w.set_sadd((address << 1 | 0) as u16);
|
|
w.set_add10(i2c::vals::Addmode::BIT7);
|
|
w.set_dir(i2c::vals::Dir::READ);
|
|
w.set_nbytes(length as u8);
|
|
w.set_start(true);
|
|
w.set_autoend(stop.autoend());
|
|
w.set_reload(reload);
|
|
});
|
|
|
|
Ok(())
|
|
}
|
|
|
|
unsafe fn master_write(
|
|
address: u8,
|
|
length: usize,
|
|
stop: Stop,
|
|
reload: bool,
|
|
check_timeout: impl Fn() -> Result<(), Error>,
|
|
) -> Result<(), Error> {
|
|
assert!(length < 256);
|
|
|
|
// Wait for any previous address sequence to end
|
|
// automatically. This could be up to 50% of a bus
|
|
// cycle (ie. up to 0.5/freq)
|
|
while T::regs().cr2().read().start() {
|
|
check_timeout()?;
|
|
}
|
|
|
|
let reload = if reload {
|
|
i2c::vals::Reload::NOTCOMPLETED
|
|
} else {
|
|
i2c::vals::Reload::COMPLETED
|
|
};
|
|
|
|
// Set START and prepare to send `bytes`. The
|
|
// START bit can be set even if the bus is BUSY or
|
|
// I2C is in slave mode.
|
|
T::regs().cr2().modify(|w| {
|
|
w.set_sadd((address << 1 | 0) as u16);
|
|
w.set_add10(i2c::vals::Addmode::BIT7);
|
|
w.set_dir(i2c::vals::Dir::WRITE);
|
|
w.set_nbytes(length as u8);
|
|
w.set_start(true);
|
|
w.set_autoend(stop.autoend());
|
|
w.set_reload(reload);
|
|
});
|
|
|
|
Ok(())
|
|
}
|
|
|
|
unsafe fn master_continue(
|
|
length: usize,
|
|
reload: bool,
|
|
check_timeout: impl Fn() -> Result<(), Error>,
|
|
) -> Result<(), Error> {
|
|
assert!(length < 256 && length > 0);
|
|
|
|
while !T::regs().isr().read().tcr() {
|
|
check_timeout()?;
|
|
}
|
|
|
|
let reload = if reload {
|
|
i2c::vals::Reload::NOTCOMPLETED
|
|
} else {
|
|
i2c::vals::Reload::COMPLETED
|
|
};
|
|
|
|
T::regs().cr2().modify(|w| {
|
|
w.set_nbytes(length as u8);
|
|
w.set_reload(reload);
|
|
});
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn flush_txdr(&self) {
|
|
//if $i2c.isr.read().txis().bit_is_set() {
|
|
//$i2c.txdr.write(|w| w.txdata().bits(0));
|
|
//}
|
|
|
|
unsafe {
|
|
if T::regs().isr().read().txis() {
|
|
T::regs().txdr().write(|w| w.set_txdata(0));
|
|
}
|
|
if !T::regs().isr().read().txe() {
|
|
T::regs().isr().modify(|w| w.set_txe(true))
|
|
}
|
|
}
|
|
|
|
// If TXDR is not flagged as empty, write 1 to flush it
|
|
//if $i2c.isr.read().txe().is_not_empty() {
|
|
//$i2c.isr.write(|w| w.txe().set_bit());
|
|
//}
|
|
}
|
|
|
|
fn wait_txe(&self, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
|
|
loop {
|
|
unsafe {
|
|
let isr = T::regs().isr().read();
|
|
if isr.txe() {
|
|
return Ok(());
|
|
} else if isr.berr() {
|
|
T::regs().icr().write(|reg| reg.set_berrcf(true));
|
|
return Err(Error::Bus);
|
|
} else if isr.arlo() {
|
|
T::regs().icr().write(|reg| reg.set_arlocf(true));
|
|
return Err(Error::Arbitration);
|
|
} else if isr.nackf() {
|
|
T::regs().icr().write(|reg| reg.set_nackcf(true));
|
|
self.flush_txdr();
|
|
return Err(Error::Nack);
|
|
}
|
|
}
|
|
|
|
check_timeout()?;
|
|
}
|
|
}
|
|
|
|
fn wait_rxne(&self, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
|
|
loop {
|
|
unsafe {
|
|
let isr = T::regs().isr().read();
|
|
if isr.rxne() {
|
|
return Ok(());
|
|
} else if isr.berr() {
|
|
T::regs().icr().write(|reg| reg.set_berrcf(true));
|
|
return Err(Error::Bus);
|
|
} else if isr.arlo() {
|
|
T::regs().icr().write(|reg| reg.set_arlocf(true));
|
|
return Err(Error::Arbitration);
|
|
} else if isr.nackf() {
|
|
T::regs().icr().write(|reg| reg.set_nackcf(true));
|
|
self.flush_txdr();
|
|
return Err(Error::Nack);
|
|
}
|
|
}
|
|
|
|
check_timeout()?;
|
|
}
|
|
}
|
|
|
|
fn wait_tc(&self, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
|
|
loop {
|
|
unsafe {
|
|
let isr = T::regs().isr().read();
|
|
if isr.tc() {
|
|
return Ok(());
|
|
} else if isr.berr() {
|
|
T::regs().icr().write(|reg| reg.set_berrcf(true));
|
|
return Err(Error::Bus);
|
|
} else if isr.arlo() {
|
|
T::regs().icr().write(|reg| reg.set_arlocf(true));
|
|
return Err(Error::Arbitration);
|
|
} else if isr.nackf() {
|
|
T::regs().icr().write(|reg| reg.set_nackcf(true));
|
|
self.flush_txdr();
|
|
return Err(Error::Nack);
|
|
}
|
|
}
|
|
|
|
check_timeout()?;
|
|
}
|
|
}
|
|
|
|
fn read_internal(
|
|
&mut self,
|
|
address: u8,
|
|
read: &mut [u8],
|
|
restart: bool,
|
|
check_timeout: impl Fn() -> Result<(), Error>,
|
|
) -> Result<(), Error> {
|
|
let completed_chunks = read.len() / 255;
|
|
let total_chunks = if completed_chunks * 255 == read.len() {
|
|
completed_chunks
|
|
} else {
|
|
completed_chunks + 1
|
|
};
|
|
let last_chunk_idx = total_chunks.saturating_sub(1);
|
|
|
|
unsafe {
|
|
Self::master_read(
|
|
address,
|
|
read.len().min(255),
|
|
Stop::Automatic,
|
|
last_chunk_idx != 0,
|
|
restart,
|
|
&check_timeout,
|
|
)?;
|
|
}
|
|
|
|
for (number, chunk) in read.chunks_mut(255).enumerate() {
|
|
if number != 0 {
|
|
// NOTE(unsafe) We have &mut self
|
|
unsafe {
|
|
Self::master_continue(chunk.len(), number != last_chunk_idx, &check_timeout)?;
|
|
}
|
|
}
|
|
|
|
for byte in chunk {
|
|
// Wait until we have received something
|
|
self.wait_rxne(&check_timeout)?;
|
|
|
|
unsafe {
|
|
*byte = T::regs().rxdr().read().rxdata();
|
|
}
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn write_internal(
|
|
&mut self,
|
|
address: u8,
|
|
write: &[u8],
|
|
send_stop: bool,
|
|
check_timeout: impl Fn() -> Result<(), Error>,
|
|
) -> Result<(), Error> {
|
|
let completed_chunks = write.len() / 255;
|
|
let total_chunks = if completed_chunks * 255 == write.len() {
|
|
completed_chunks
|
|
} else {
|
|
completed_chunks + 1
|
|
};
|
|
let last_chunk_idx = total_chunks.saturating_sub(1);
|
|
|
|
// I2C start
|
|
//
|
|
// ST SAD+W
|
|
// NOTE(unsafe) We have &mut self
|
|
unsafe {
|
|
Self::master_write(
|
|
address,
|
|
write.len().min(255),
|
|
Stop::Software,
|
|
last_chunk_idx != 0,
|
|
&check_timeout,
|
|
)?;
|
|
}
|
|
|
|
for (number, chunk) in write.chunks(255).enumerate() {
|
|
if number != 0 {
|
|
// NOTE(unsafe) We have &mut self
|
|
unsafe {
|
|
Self::master_continue(chunk.len(), number != last_chunk_idx, &check_timeout)?;
|
|
}
|
|
}
|
|
|
|
for byte in chunk {
|
|
// Wait until we are allowed to send data
|
|
// (START has been ACKed or last byte when
|
|
// through)
|
|
self.wait_txe(&check_timeout)?;
|
|
|
|
unsafe {
|
|
T::regs().txdr().write(|w| w.set_txdata(*byte));
|
|
}
|
|
}
|
|
}
|
|
// Wait until the write finishes
|
|
self.wait_tc(&check_timeout)?;
|
|
|
|
if send_stop {
|
|
self.master_stop();
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
async fn write_dma_internal(
|
|
&mut self,
|
|
address: u8,
|
|
write: &[u8],
|
|
first_slice: bool,
|
|
last_slice: bool,
|
|
check_timeout: impl Fn() -> Result<(), Error>,
|
|
) -> Result<(), Error>
|
|
where
|
|
TXDMA: crate::i2c::TxDma<T>,
|
|
{
|
|
let total_len = write.len();
|
|
|
|
let dma_transfer = unsafe {
|
|
let regs = T::regs();
|
|
regs.cr1().modify(|w| {
|
|
w.set_txdmaen(true);
|
|
if first_slice {
|
|
w.set_tcie(true);
|
|
}
|
|
});
|
|
let dst = regs.txdr().ptr() as *mut u8;
|
|
|
|
let ch = &mut self.tx_dma;
|
|
let request = ch.request();
|
|
Transfer::new_write(ch, request, write, dst, Default::default())
|
|
};
|
|
|
|
let state = T::state();
|
|
let mut remaining_len = total_len;
|
|
|
|
let on_drop = OnDrop::new(|| {
|
|
let regs = T::regs();
|
|
unsafe {
|
|
regs.cr1().modify(|w| {
|
|
if last_slice {
|
|
w.set_txdmaen(false);
|
|
}
|
|
w.set_tcie(false);
|
|
})
|
|
}
|
|
});
|
|
|
|
poll_fn(|cx| {
|
|
state.waker.register(cx.waker());
|
|
|
|
let isr = unsafe { T::regs().isr().read() };
|
|
if remaining_len == total_len {
|
|
// NOTE(unsafe) self.tx_dma does not fiddle with the i2c registers
|
|
if first_slice {
|
|
unsafe {
|
|
Self::master_write(
|
|
address,
|
|
total_len.min(255),
|
|
Stop::Software,
|
|
(total_len > 255) || !last_slice,
|
|
&check_timeout,
|
|
)?;
|
|
}
|
|
} else {
|
|
unsafe {
|
|
Self::master_continue(total_len.min(255), (total_len > 255) || !last_slice, &check_timeout)?;
|
|
T::regs().cr1().modify(|w| w.set_tcie(true));
|
|
}
|
|
}
|
|
} else if !(isr.tcr() || isr.tc()) {
|
|
// poll_fn was woken without an interrupt present
|
|
return Poll::Pending;
|
|
} else if remaining_len == 0 {
|
|
return Poll::Ready(Ok(()));
|
|
} else {
|
|
let last_piece = (remaining_len <= 255) && last_slice;
|
|
|
|
// NOTE(unsafe) self.tx_dma does not fiddle with the i2c registers
|
|
unsafe {
|
|
if let Err(e) = Self::master_continue(remaining_len.min(255), !last_piece, &check_timeout) {
|
|
return Poll::Ready(Err(e));
|
|
}
|
|
T::regs().cr1().modify(|w| w.set_tcie(true));
|
|
}
|
|
}
|
|
|
|
remaining_len = remaining_len.saturating_sub(255);
|
|
Poll::Pending
|
|
})
|
|
.await?;
|
|
|
|
dma_transfer.await;
|
|
|
|
if last_slice {
|
|
// This should be done already
|
|
self.wait_tc(&check_timeout)?;
|
|
self.master_stop();
|
|
}
|
|
|
|
drop(on_drop);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
async fn read_dma_internal(
|
|
&mut self,
|
|
address: u8,
|
|
buffer: &mut [u8],
|
|
restart: bool,
|
|
check_timeout: impl Fn() -> Result<(), Error>,
|
|
) -> Result<(), Error>
|
|
where
|
|
RXDMA: crate::i2c::RxDma<T>,
|
|
{
|
|
let total_len = buffer.len();
|
|
|
|
let dma_transfer = unsafe {
|
|
let regs = T::regs();
|
|
regs.cr1().modify(|w| {
|
|
w.set_rxdmaen(true);
|
|
w.set_tcie(true);
|
|
});
|
|
let src = regs.rxdr().ptr() as *mut u8;
|
|
|
|
let ch = &mut self.rx_dma;
|
|
let request = ch.request();
|
|
Transfer::new_read(ch, request, src, buffer, Default::default())
|
|
};
|
|
|
|
let state = T::state();
|
|
let mut remaining_len = total_len;
|
|
|
|
let on_drop = OnDrop::new(|| {
|
|
let regs = T::regs();
|
|
unsafe {
|
|
regs.cr1().modify(|w| {
|
|
w.set_rxdmaen(false);
|
|
w.set_tcie(false);
|
|
})
|
|
}
|
|
});
|
|
|
|
poll_fn(|cx| {
|
|
state.waker.register(cx.waker());
|
|
|
|
let isr = unsafe { T::regs().isr().read() };
|
|
if remaining_len == total_len {
|
|
// NOTE(unsafe) self.rx_dma does not fiddle with the i2c registers
|
|
unsafe {
|
|
Self::master_read(
|
|
address,
|
|
total_len.min(255),
|
|
Stop::Software,
|
|
total_len > 255,
|
|
restart,
|
|
&check_timeout,
|
|
)?;
|
|
}
|
|
} else if !(isr.tcr() || isr.tc()) {
|
|
// poll_fn was woken without an interrupt present
|
|
return Poll::Pending;
|
|
} else if remaining_len == 0 {
|
|
return Poll::Ready(Ok(()));
|
|
} else {
|
|
let last_piece = remaining_len <= 255;
|
|
|
|
// NOTE(unsafe) self.rx_dma does not fiddle with the i2c registers
|
|
unsafe {
|
|
if let Err(e) = Self::master_continue(remaining_len.min(255), !last_piece, &check_timeout) {
|
|
return Poll::Ready(Err(e));
|
|
}
|
|
T::regs().cr1().modify(|w| w.set_tcie(true));
|
|
}
|
|
}
|
|
|
|
remaining_len = remaining_len.saturating_sub(255);
|
|
Poll::Pending
|
|
})
|
|
.await?;
|
|
|
|
dma_transfer.await;
|
|
|
|
// This should be done already
|
|
self.wait_tc(&check_timeout)?;
|
|
self.master_stop();
|
|
|
|
drop(on_drop);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// =========================
|
|
// Async public API
|
|
|
|
pub async fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Error>
|
|
where
|
|
TXDMA: crate::i2c::TxDma<T>,
|
|
{
|
|
if write.is_empty() {
|
|
self.write_internal(address, write, true, || Ok(()))
|
|
} else {
|
|
self.write_dma_internal(address, write, true, true, || Ok(())).await
|
|
}
|
|
}
|
|
|
|
pub async fn write_vectored(&mut self, address: u8, write: &[&[u8]]) -> Result<(), Error>
|
|
where
|
|
TXDMA: crate::i2c::TxDma<T>,
|
|
{
|
|
if write.is_empty() {
|
|
return Err(Error::ZeroLengthTransfer);
|
|
}
|
|
let mut iter = write.iter();
|
|
|
|
let mut first = true;
|
|
let mut current = iter.next();
|
|
while let Some(c) = current {
|
|
let next = iter.next();
|
|
let is_last = next.is_none();
|
|
|
|
self.write_dma_internal(address, c, first, is_last, || Ok(())).await?;
|
|
first = false;
|
|
current = next;
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
pub async fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error>
|
|
where
|
|
RXDMA: crate::i2c::RxDma<T>,
|
|
{
|
|
if buffer.is_empty() {
|
|
self.read_internal(address, buffer, false, || Ok(()))
|
|
} else {
|
|
self.read_dma_internal(address, buffer, false, || Ok(())).await
|
|
}
|
|
}
|
|
|
|
pub async fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Error>
|
|
where
|
|
TXDMA: super::TxDma<T>,
|
|
RXDMA: super::RxDma<T>,
|
|
{
|
|
if write.is_empty() {
|
|
self.write_internal(address, write, false, || Ok(()))?;
|
|
} else {
|
|
self.write_dma_internal(address, write, true, true, || Ok(())).await?;
|
|
}
|
|
|
|
if read.is_empty() {
|
|
self.read_internal(address, read, true, || Ok(()))?;
|
|
} else {
|
|
self.read_dma_internal(address, read, true, || Ok(())).await?;
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// =========================
|
|
// Blocking public API
|
|
|
|
pub fn blocking_read_timeout(
|
|
&mut self,
|
|
address: u8,
|
|
read: &mut [u8],
|
|
check_timeout: impl Fn() -> Result<(), Error>,
|
|
) -> Result<(), Error> {
|
|
self.read_internal(address, read, false, &check_timeout)
|
|
// Automatic Stop
|
|
}
|
|
|
|
pub fn blocking_read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Error> {
|
|
self.blocking_read_timeout(address, read, || Ok(()))
|
|
}
|
|
|
|
pub fn blocking_write_timeout(
|
|
&mut self,
|
|
address: u8,
|
|
write: &[u8],
|
|
check_timeout: impl Fn() -> Result<(), Error>,
|
|
) -> Result<(), Error> {
|
|
self.write_internal(address, write, true, &check_timeout)
|
|
}
|
|
|
|
pub fn blocking_write(&mut self, address: u8, write: &[u8]) -> Result<(), Error> {
|
|
self.blocking_write_timeout(address, write, || Ok(()))
|
|
}
|
|
|
|
pub fn blocking_write_read_timeout(
|
|
&mut self,
|
|
address: u8,
|
|
write: &[u8],
|
|
read: &mut [u8],
|
|
check_timeout: impl Fn() -> Result<(), Error>,
|
|
) -> Result<(), Error> {
|
|
self.write_internal(address, write, false, &check_timeout)?;
|
|
self.read_internal(address, read, true, &check_timeout)
|
|
// Automatic Stop
|
|
}
|
|
|
|
pub fn blocking_write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Error> {
|
|
self.blocking_write_read_timeout(address, write, read, || Ok(()))
|
|
}
|
|
|
|
pub fn blocking_write_vectored_timeout(
|
|
&mut self,
|
|
address: u8,
|
|
write: &[&[u8]],
|
|
check_timeout: impl Fn() -> Result<(), Error>,
|
|
) -> Result<(), Error> {
|
|
if write.is_empty() {
|
|
return Err(Error::ZeroLengthTransfer);
|
|
}
|
|
let first_length = write[0].len();
|
|
let last_slice_index = write.len() - 1;
|
|
|
|
// NOTE(unsafe) We have &mut self
|
|
unsafe {
|
|
Self::master_write(
|
|
address,
|
|
first_length.min(255),
|
|
Stop::Software,
|
|
(first_length > 255) || (last_slice_index != 0),
|
|
&check_timeout,
|
|
)?;
|
|
}
|
|
|
|
for (idx, slice) in write.iter().enumerate() {
|
|
let slice_len = slice.len();
|
|
let completed_chunks = slice_len / 255;
|
|
let total_chunks = if completed_chunks * 255 == slice_len {
|
|
completed_chunks
|
|
} else {
|
|
completed_chunks + 1
|
|
};
|
|
let last_chunk_idx = total_chunks.saturating_sub(1);
|
|
|
|
if idx != 0 {
|
|
// NOTE(unsafe) We have &mut self
|
|
unsafe {
|
|
Self::master_continue(
|
|
slice_len.min(255),
|
|
(idx != last_slice_index) || (slice_len > 255),
|
|
&check_timeout,
|
|
)?;
|
|
}
|
|
}
|
|
|
|
for (number, chunk) in slice.chunks(255).enumerate() {
|
|
if number != 0 {
|
|
// NOTE(unsafe) We have &mut self
|
|
unsafe {
|
|
Self::master_continue(
|
|
chunk.len(),
|
|
(number != last_chunk_idx) || (idx != last_slice_index),
|
|
&check_timeout,
|
|
)?;
|
|
}
|
|
}
|
|
|
|
for byte in chunk {
|
|
// Wait until we are allowed to send data
|
|
// (START has been ACKed or last byte when
|
|
// through)
|
|
self.wait_txe(&check_timeout)?;
|
|
|
|
// Put byte on the wire
|
|
//self.i2c.txdr.write(|w| w.txdata().bits(*byte));
|
|
unsafe {
|
|
T::regs().txdr().write(|w| w.set_txdata(*byte));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Wait until the write finishes
|
|
self.wait_tc(&check_timeout)?;
|
|
self.master_stop();
|
|
|
|
Ok(())
|
|
}
|
|
|
|
pub fn blocking_write_vectored(&mut self, address: u8, write: &[&[u8]]) -> Result<(), Error> {
|
|
self.blocking_write_vectored_timeout(address, write, || Ok(()))
|
|
}
|
|
}
|
|
|
|
mod eh02 {
|
|
use super::*;
|
|
|
|
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Read for I2c<'d, T> {
|
|
type Error = Error;
|
|
|
|
fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
|
|
self.blocking_read(address, buffer)
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Write for I2c<'d, T> {
|
|
type Error = Error;
|
|
|
|
fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
|
|
self.blocking_write(address, write)
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, T> {
|
|
type Error = Error;
|
|
|
|
fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
|
|
self.blocking_write_read(address, write, read)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// I2C Stop Configuration
|
|
///
|
|
/// Peripheral options for generating the STOP condition
|
|
#[derive(Copy, Clone, PartialEq)]
|
|
enum Stop {
|
|
/// Software end mode: Must write register to generate STOP condition
|
|
Software,
|
|
/// Automatic end mode: A STOP condition is automatically generated once the
|
|
/// configured number of bytes have been transferred
|
|
Automatic,
|
|
}
|
|
|
|
impl Stop {
|
|
fn autoend(&self) -> i2c::vals::Autoend {
|
|
match self {
|
|
Stop::Software => i2c::vals::Autoend::SOFTWARE,
|
|
Stop::Automatic => i2c::vals::Autoend::AUTOMATIC,
|
|
}
|
|
}
|
|
}
|
|
|
|
struct Timings {
|
|
prescale: u8,
|
|
scll: u8,
|
|
sclh: u8,
|
|
sdadel: u8,
|
|
scldel: u8,
|
|
}
|
|
|
|
impl Timings {
|
|
fn new(i2cclk: Hertz, freq: Hertz) -> Self {
|
|
let i2cclk = i2cclk.0;
|
|
let freq = freq.0;
|
|
// Refer to RM0433 Rev 7 Figure 539 for setup and hold timing:
|
|
//
|
|
// t_I2CCLK = 1 / PCLK1
|
|
// t_PRESC = (PRESC + 1) * t_I2CCLK
|
|
// t_SCLL = (SCLL + 1) * t_PRESC
|
|
// t_SCLH = (SCLH + 1) * t_PRESC
|
|
//
|
|
// t_SYNC1 + t_SYNC2 > 4 * t_I2CCLK
|
|
// t_SCL ~= t_SYNC1 + t_SYNC2 + t_SCLL + t_SCLH
|
|
let ratio = i2cclk / freq;
|
|
|
|
// For the standard-mode configuration method, we must have a ratio of 4
|
|
// or higher
|
|
assert!(ratio >= 4, "The I2C PCLK must be at least 4 times the bus frequency!");
|
|
|
|
let (presc_reg, scll, sclh, sdadel, scldel) = if freq > 100_000 {
|
|
// Fast-mode (Fm) or Fast-mode Plus (Fm+)
|
|
// here we pick SCLL + 1 = 2 * (SCLH + 1)
|
|
|
|
// Prescaler, 384 ticks for sclh/scll. Round up then subtract 1
|
|
let presc_reg = ((ratio - 1) / 384) as u8;
|
|
// ratio < 1200 by pclk 120MHz max., therefore presc < 16
|
|
|
|
// Actual precale value selected
|
|
let presc = (presc_reg + 1) as u32;
|
|
|
|
let sclh = ((ratio / presc) - 3) / 3;
|
|
let scll = (2 * (sclh + 1)) - 1;
|
|
|
|
let (sdadel, scldel) = if freq > 400_000 {
|
|
// Fast-mode Plus (Fm+)
|
|
assert!(i2cclk >= 17_000_000); // See table in datsheet
|
|
|
|
let sdadel = i2cclk / 8_000_000 / presc;
|
|
let scldel = i2cclk / 4_000_000 / presc - 1;
|
|
|
|
(sdadel, scldel)
|
|
} else {
|
|
// Fast-mode (Fm)
|
|
assert!(i2cclk >= 8_000_000); // See table in datsheet
|
|
|
|
let sdadel = i2cclk / 4_000_000 / presc;
|
|
let scldel = i2cclk / 2_000_000 / presc - 1;
|
|
|
|
(sdadel, scldel)
|
|
};
|
|
|
|
(presc_reg, scll as u8, sclh as u8, sdadel as u8, scldel as u8)
|
|
} else {
|
|
// Standard-mode (Sm)
|
|
// here we pick SCLL = SCLH
|
|
assert!(i2cclk >= 2_000_000); // See table in datsheet
|
|
|
|
// Prescaler, 512 ticks for sclh/scll. Round up then
|
|
// subtract 1
|
|
let presc = (ratio - 1) / 512;
|
|
let presc_reg = cmp::min(presc, 15) as u8;
|
|
|
|
// Actual prescale value selected
|
|
let presc = (presc_reg + 1) as u32;
|
|
|
|
let sclh = ((ratio / presc) - 2) / 2;
|
|
let scll = sclh;
|
|
|
|
// Speed check
|
|
assert!(sclh < 256, "The I2C PCLK is too fast for this bus frequency!");
|
|
|
|
let sdadel = i2cclk / 2_000_000 / presc;
|
|
let scldel = i2cclk / 500_000 / presc - 1;
|
|
|
|
(presc_reg, scll as u8, sclh as u8, sdadel as u8, scldel as u8)
|
|
};
|
|
|
|
// Sanity check
|
|
assert!(presc_reg < 16);
|
|
|
|
// Keep values within reasonable limits for fast per_ck
|
|
let sdadel = cmp::max(sdadel, 2);
|
|
let scldel = cmp::max(scldel, 4);
|
|
|
|
//(presc_reg, scll, sclh, sdadel, scldel)
|
|
Self {
|
|
prescale: presc_reg,
|
|
scll,
|
|
sclh,
|
|
sdadel,
|
|
scldel,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "unstable-traits")]
|
|
mod eh1 {
|
|
use super::*;
|
|
|
|
impl embedded_hal_1::i2c::Error for Error {
|
|
fn kind(&self) -> embedded_hal_1::i2c::ErrorKind {
|
|
match *self {
|
|
Self::Bus => embedded_hal_1::i2c::ErrorKind::Bus,
|
|
Self::Arbitration => embedded_hal_1::i2c::ErrorKind::ArbitrationLoss,
|
|
Self::Nack => {
|
|
embedded_hal_1::i2c::ErrorKind::NoAcknowledge(embedded_hal_1::i2c::NoAcknowledgeSource::Unknown)
|
|
}
|
|
Self::Timeout => embedded_hal_1::i2c::ErrorKind::Other,
|
|
Self::Crc => embedded_hal_1::i2c::ErrorKind::Other,
|
|
Self::Overrun => embedded_hal_1::i2c::ErrorKind::Overrun,
|
|
Self::ZeroLengthTransfer => embedded_hal_1::i2c::ErrorKind::Other,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance, TXDMA, RXDMA> embedded_hal_1::i2c::ErrorType for I2c<'d, T, TXDMA, RXDMA> {
|
|
type Error = Error;
|
|
}
|
|
|
|
impl<'d, T: Instance> embedded_hal_1::i2c::I2c for I2c<'d, T, NoDma, NoDma> {
|
|
fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
|
|
self.blocking_read(address, read)
|
|
}
|
|
|
|
fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
|
|
self.blocking_write(address, write)
|
|
}
|
|
|
|
fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
|
|
self.blocking_write_read(address, write, read)
|
|
}
|
|
|
|
fn transaction(
|
|
&mut self,
|
|
_address: u8,
|
|
_operations: &mut [embedded_hal_1::i2c::Operation<'_>],
|
|
) -> Result<(), Self::Error> {
|
|
todo!();
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(all(feature = "unstable-traits", feature = "nightly"))]
|
|
mod eha {
|
|
use super::super::{RxDma, TxDma};
|
|
use super::*;
|
|
|
|
impl<'d, T: Instance, TXDMA: TxDma<T>, RXDMA: RxDma<T>> embedded_hal_async::i2c::I2c for I2c<'d, T, TXDMA, RXDMA> {
|
|
async fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
|
|
self.read(address, read).await
|
|
}
|
|
|
|
async fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
|
|
self.write(address, write).await
|
|
}
|
|
|
|
async fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
|
|
self.write_read(address, write, read).await
|
|
}
|
|
|
|
async fn transaction(
|
|
&mut self,
|
|
address: u8,
|
|
operations: &mut [embedded_hal_1::i2c::Operation<'_>],
|
|
) -> Result<(), Self::Error> {
|
|
let _ = address;
|
|
let _ = operations;
|
|
todo!()
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance> SetConfig for I2c<'d, T> {
|
|
type Config = Hertz;
|
|
fn set_config(&mut self, config: &Self::Config) {
|
|
let timings = Timings::new(T::frequency(), *config);
|
|
unsafe {
|
|
T::regs().timingr().write(|reg| {
|
|
reg.set_presc(timings.prescale);
|
|
reg.set_scll(timings.scll);
|
|
reg.set_sclh(timings.sclh);
|
|
reg.set_sdadel(timings.sdadel);
|
|
reg.set_scldel(timings.scldel);
|
|
});
|
|
}
|
|
}
|
|
}
|