embassy/embassy-nrf/src/uarte.rs

1012 lines
31 KiB
Rust

#![macro_use]
//! Async UART
//!
//! Async UART is provided in two flavors - this one and also [crate::buffered_uarte::BufferedUarte].
//! The [Uarte] here is useful for those use-cases where reading the UARTE peripheral is
//! exclusively awaited on. If the [Uarte] is required to be awaited on with some other future,
//! for example when using `futures_util::future::select`, then you should consider
//! [crate::buffered_uarte::BufferedUarte] so that reads may continue while processing these
//! other futures. If you do not then you may lose data between reads.
//!
//! An advantage of the [Uarte] has over [crate::buffered_uarte::BufferedUarte] is that less
//! memory may be used given that buffers are passed in directly to its read and write
//! methods.
use core::marker::PhantomData;
use core::sync::atomic::{compiler_fence, Ordering};
use core::task::Poll;
use embassy::interrupt::InterruptExt;
use embassy::util::Unborrow;
use embassy_hal_common::drop::OnDrop;
use embassy_hal_common::unborrow;
use futures::future::poll_fn;
use crate::chip::{EASY_DMA_SIZE, FORCE_COPY_BUFFER_SIZE};
use crate::gpio::sealed::Pin as _;
use crate::gpio::{self, AnyPin, Pin as GpioPin, PselBits};
use crate::interrupt::Interrupt;
use crate::pac;
use crate::ppi::{AnyConfigurableChannel, ConfigurableChannel, Event, Ppi, Task};
use crate::timer::Instance as TimerInstance;
use crate::timer::{Frequency, Timer};
use crate::util::slice_in_ram_or;
// Re-export SVD variants to allow user to directly set values.
pub use pac::uarte0::{baudrate::BAUDRATE_A as Baudrate, config::PARITY_A as Parity};
#[non_exhaustive]
pub struct Config {
pub parity: Parity,
pub baudrate: Baudrate,
}
impl Default for Config {
fn default() -> Self {
Self {
parity: Parity::EXCLUDED,
baudrate: Baudrate::BAUD115200,
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub enum Error {
BufferTooLong,
BufferZeroLength,
DMABufferNotInDataMemory,
// TODO: add other error variants.
}
/// Interface to the UARTE peripheral using EasyDMA to offload the transmission and reception workload.
///
/// For more details about EasyDMA, consult the module documentation.
pub struct Uarte<'d, T: Instance> {
phantom: PhantomData<&'d mut T>,
tx: UarteTx<'d, T>,
rx: UarteRx<'d, T>,
}
/// Transmitter interface to the UARTE peripheral obtained
/// via [Uarte]::split.
pub struct UarteTx<'d, T: Instance> {
phantom: PhantomData<&'d mut T>,
}
/// Receiver interface to the UARTE peripheral obtained
/// via [Uarte]::split.
pub struct UarteRx<'d, T: Instance> {
phantom: PhantomData<&'d mut T>,
}
impl<'d, T: Instance> Uarte<'d, T> {
/// Create a new UARTE without hardware flow control
pub fn new(
uarte: impl Unborrow<Target = T> + 'd,
irq: impl Unborrow<Target = T::Interrupt> + 'd,
rxd: impl Unborrow<Target = impl GpioPin> + 'd,
txd: impl Unborrow<Target = impl GpioPin> + 'd,
config: Config,
) -> Self {
unborrow!(rxd, txd);
Self::new_inner(uarte, irq, rxd.degrade(), txd.degrade(), None, None, config)
}
/// Create a new UARTE with hardware flow control (RTS/CTS)
pub fn new_with_rtscts(
uarte: impl Unborrow<Target = T> + 'd,
irq: impl Unborrow<Target = T::Interrupt> + 'd,
rxd: impl Unborrow<Target = impl GpioPin> + 'd,
txd: impl Unborrow<Target = impl GpioPin> + 'd,
cts: impl Unborrow<Target = impl GpioPin> + 'd,
rts: impl Unborrow<Target = impl GpioPin> + 'd,
config: Config,
) -> Self {
unborrow!(rxd, txd, cts, rts);
Self::new_inner(
uarte,
irq,
rxd.degrade(),
txd.degrade(),
Some(cts.degrade()),
Some(rts.degrade()),
config,
)
}
fn new_inner(
_uarte: impl Unborrow<Target = T> + 'd,
irq: impl Unborrow<Target = T::Interrupt> + 'd,
rxd: AnyPin,
txd: AnyPin,
cts: Option<AnyPin>,
rts: Option<AnyPin>,
config: Config,
) -> Self {
unborrow!(irq);
let r = T::regs();
rxd.conf().write(|w| w.input().connect().drive().h0h1());
r.psel.rxd.write(|w| unsafe { w.bits(rxd.psel_bits()) });
txd.set_high();
txd.conf().write(|w| w.dir().output().drive().h0h1());
r.psel.txd.write(|w| unsafe { w.bits(txd.psel_bits()) });
if let Some(pin) = &cts {
pin.conf().write(|w| w.input().connect().drive().h0h1());
}
r.psel.cts.write(|w| unsafe { w.bits(cts.psel_bits()) });
if let Some(pin) = &rts {
pin.set_high();
pin.conf().write(|w| w.dir().output().drive().h0h1());
}
r.psel.rts.write(|w| unsafe { w.bits(rts.psel_bits()) });
// Configure
let hardware_flow_control = match (rts.is_some(), cts.is_some()) {
(false, false) => false,
(true, true) => true,
_ => panic!("RTS and CTS pins must be either both set or none set."),
};
r.config.write(|w| {
w.hwfc().bit(hardware_flow_control);
w.parity().variant(config.parity);
w
});
r.baudrate.write(|w| w.baudrate().variant(config.baudrate));
// Disable all interrupts
r.intenclr.write(|w| unsafe { w.bits(0xFFFF_FFFF) });
// Reset rxstarted, txstarted. These are used by drop to know whether a transfer was
// stopped midway or not.
r.events_rxstarted.reset();
r.events_txstarted.reset();
irq.set_handler(Self::on_interrupt);
irq.unpend();
irq.enable();
// Enable
apply_workaround_for_enable_anomaly(&r);
r.enable.write(|w| w.enable().enabled());
let s = T::state();
s.tx_rx_refcount.store(2, Ordering::Relaxed);
Self {
phantom: PhantomData,
tx: UarteTx {
phantom: PhantomData,
},
rx: UarteRx {
phantom: PhantomData,
},
}
}
/// Split the Uarte into a transmitter and receiver, which is
/// particuarly useful when having two tasks correlating to
/// transmitting and receiving.
pub fn split(self) -> (UarteTx<'d, T>, UarteRx<'d, T>) {
(self.tx, self.rx)
}
/// Return the endtx event for use with PPI
pub fn event_endtx(&self) -> Event {
let r = T::regs();
Event::from_reg(&r.events_endtx)
}
fn on_interrupt(_: *mut ()) {
let r = T::regs();
let s = T::state();
if r.events_endrx.read().bits() != 0 {
s.endrx_waker.wake();
r.intenclr.write(|w| w.endrx().clear());
}
if r.events_endtx.read().bits() != 0 {
s.endtx_waker.wake();
r.intenclr.write(|w| w.endtx().clear());
}
}
pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
self.rx.read(buffer).await
}
pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error> {
self.tx.write(buffer).await
}
/// Same as [`write`](Uarte::write) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
pub async fn write_from_ram(&mut self, buffer: &[u8]) -> Result<(), Error> {
self.tx.write_from_ram(buffer).await
}
pub fn blocking_read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
self.rx.blocking_read(buffer)
}
pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<(), Error> {
self.tx.blocking_write(buffer)
}
/// Same as [`blocking_write`](Uarte::blocking_write) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
pub fn blocking_write_from_ram(&mut self, buffer: &[u8]) -> Result<(), Error> {
self.tx.blocking_write_from_ram(buffer)
}
}
impl<'d, T: Instance> UarteTx<'d, T> {
pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error> {
match self.write_from_ram(buffer).await {
Ok(_) => Ok(()),
Err(Error::DMABufferNotInDataMemory) => {
trace!("Copying UARTE tx buffer into RAM for DMA");
let ram_buf = &mut [0; FORCE_COPY_BUFFER_SIZE][..buffer.len()];
ram_buf.copy_from_slice(buffer);
self.write_from_ram(&ram_buf).await
}
Err(error) => Err(error),
}
}
pub async fn write_from_ram(&mut self, buffer: &[u8]) -> Result<(), Error> {
slice_in_ram_or(buffer, Error::DMABufferNotInDataMemory)?;
if buffer.len() == 0 {
return Err(Error::BufferZeroLength);
}
if buffer.len() > EASY_DMA_SIZE {
return Err(Error::BufferTooLong);
}
let ptr = buffer.as_ptr();
let len = buffer.len();
let r = T::regs();
let s = T::state();
let drop = OnDrop::new(move || {
trace!("write drop: stopping");
r.intenclr.write(|w| w.endtx().clear());
r.events_txstopped.reset();
r.tasks_stoptx.write(|w| unsafe { w.bits(1) });
// TX is stopped almost instantly, spinning is fine.
while r.events_endtx.read().bits() == 0 {}
trace!("write drop: stopped");
});
r.txd.ptr.write(|w| unsafe { w.ptr().bits(ptr as u32) });
r.txd.maxcnt.write(|w| unsafe { w.maxcnt().bits(len as _) });
r.events_endtx.reset();
r.intenset.write(|w| w.endtx().set());
compiler_fence(Ordering::SeqCst);
trace!("starttx");
r.tasks_starttx.write(|w| unsafe { w.bits(1) });
poll_fn(|cx| {
s.endtx_waker.register(cx.waker());
if r.events_endtx.read().bits() != 0 {
return Poll::Ready(());
}
Poll::Pending
})
.await;
compiler_fence(Ordering::SeqCst);
r.events_txstarted.reset();
drop.defuse();
Ok(())
}
pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<(), Error> {
match self.blocking_write_from_ram(buffer) {
Ok(_) => Ok(()),
Err(Error::DMABufferNotInDataMemory) => {
trace!("Copying UARTE tx buffer into RAM for DMA");
let ram_buf = &mut [0; FORCE_COPY_BUFFER_SIZE][..buffer.len()];
ram_buf.copy_from_slice(buffer);
self.blocking_write_from_ram(&ram_buf)
}
Err(error) => Err(error),
}
}
pub fn blocking_write_from_ram(&mut self, buffer: &[u8]) -> Result<(), Error> {
slice_in_ram_or(buffer, Error::DMABufferNotInDataMemory)?;
if buffer.len() == 0 {
return Err(Error::BufferZeroLength);
}
if buffer.len() > EASY_DMA_SIZE {
return Err(Error::BufferTooLong);
}
let ptr = buffer.as_ptr();
let len = buffer.len();
let r = T::regs();
r.txd.ptr.write(|w| unsafe { w.ptr().bits(ptr as u32) });
r.txd.maxcnt.write(|w| unsafe { w.maxcnt().bits(len as _) });
r.events_endtx.reset();
r.intenclr.write(|w| w.endtx().clear());
compiler_fence(Ordering::SeqCst);
trace!("starttx");
r.tasks_starttx.write(|w| unsafe { w.bits(1) });
while r.events_endtx.read().bits() == 0 {}
compiler_fence(Ordering::SeqCst);
r.events_txstarted.reset();
Ok(())
}
}
impl<'a, T: Instance> Drop for UarteTx<'a, T> {
fn drop(&mut self) {
trace!("uarte tx drop");
let r = T::regs();
let did_stoptx = r.events_txstarted.read().bits() != 0;
trace!("did_stoptx {}", did_stoptx);
// Wait for txstopped, if needed.
while did_stoptx && r.events_txstopped.read().bits() == 0 {}
let s = T::state();
drop_tx_rx(&r, &s);
}
}
impl<'d, T: Instance> UarteRx<'d, T> {
pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
if buffer.len() == 0 {
return Err(Error::BufferZeroLength);
}
if buffer.len() > EASY_DMA_SIZE {
return Err(Error::BufferTooLong);
}
let ptr = buffer.as_ptr();
let len = buffer.len();
let r = T::regs();
let s = T::state();
let drop = OnDrop::new(move || {
trace!("read drop: stopping");
r.intenclr.write(|w| w.endrx().clear());
r.events_rxto.reset();
r.tasks_stoprx.write(|w| unsafe { w.bits(1) });
while r.events_endrx.read().bits() == 0 {}
trace!("read drop: stopped");
});
r.rxd.ptr.write(|w| unsafe { w.ptr().bits(ptr as u32) });
r.rxd.maxcnt.write(|w| unsafe { w.maxcnt().bits(len as _) });
r.events_endrx.reset();
r.intenset.write(|w| w.endrx().set());
compiler_fence(Ordering::SeqCst);
trace!("startrx");
r.tasks_startrx.write(|w| unsafe { w.bits(1) });
poll_fn(|cx| {
s.endrx_waker.register(cx.waker());
if r.events_endrx.read().bits() != 0 {
return Poll::Ready(());
}
Poll::Pending
})
.await;
compiler_fence(Ordering::SeqCst);
r.events_rxstarted.reset();
drop.defuse();
Ok(())
}
pub fn blocking_read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
if buffer.len() == 0 {
return Err(Error::BufferZeroLength);
}
if buffer.len() > EASY_DMA_SIZE {
return Err(Error::BufferTooLong);
}
let ptr = buffer.as_ptr();
let len = buffer.len();
let r = T::regs();
r.rxd.ptr.write(|w| unsafe { w.ptr().bits(ptr as u32) });
r.rxd.maxcnt.write(|w| unsafe { w.maxcnt().bits(len as _) });
r.events_endrx.reset();
r.intenclr.write(|w| w.endrx().clear());
compiler_fence(Ordering::SeqCst);
trace!("startrx");
r.tasks_startrx.write(|w| unsafe { w.bits(1) });
while r.events_endrx.read().bits() == 0 {}
compiler_fence(Ordering::SeqCst);
r.events_rxstarted.reset();
Ok(())
}
}
impl<'a, T: Instance> Drop for UarteRx<'a, T> {
fn drop(&mut self) {
trace!("uarte rx drop");
let r = T::regs();
let did_stoprx = r.events_rxstarted.read().bits() != 0;
trace!("did_stoprx {}", did_stoprx);
// Wait for rxto, if needed.
while did_stoprx && r.events_rxto.read().bits() == 0 {}
let s = T::state();
drop_tx_rx(&r, &s);
}
}
#[cfg(not(any(feature = "_nrf9160", feature = "nrf5340")))]
pub(in crate) fn apply_workaround_for_enable_anomaly(_r: &crate::pac::uarte0::RegisterBlock) {
// Do nothing
}
#[cfg(any(feature = "_nrf9160", feature = "nrf5340"))]
pub(in crate) fn apply_workaround_for_enable_anomaly(r: &crate::pac::uarte0::RegisterBlock) {
use core::ops::Deref;
// Apply workaround for anomalies:
// - nRF9160 - anomaly 23
// - nRF5340 - anomaly 44
let rxenable_reg: *const u32 = ((r.deref() as *const _ as usize) + 0x564) as *const u32;
let txenable_reg: *const u32 = ((r.deref() as *const _ as usize) + 0x568) as *const u32;
// NB Safety: This is taken from Nordic's driver -
// https://github.com/NordicSemiconductor/nrfx/blob/master/drivers/src/nrfx_uarte.c#L197
if unsafe { core::ptr::read_volatile(txenable_reg) } == 1 {
r.tasks_stoptx.write(|w| unsafe { w.bits(1) });
}
// NB Safety: This is taken from Nordic's driver -
// https://github.com/NordicSemiconductor/nrfx/blob/master/drivers/src/nrfx_uarte.c#L197
if unsafe { core::ptr::read_volatile(rxenable_reg) } == 1 {
r.enable.write(|w| w.enable().enabled());
r.tasks_stoprx.write(|w| unsafe { w.bits(1) });
let mut workaround_succeded = false;
// The UARTE is able to receive up to four bytes after the STOPRX task has been triggered.
// On lowest supported baud rate (1200 baud), with parity bit and two stop bits configured
// (resulting in 12 bits per data byte sent), this may take up to 40 ms.
for _ in 0..40000 {
// NB Safety: This is taken from Nordic's driver -
// https://github.com/NordicSemiconductor/nrfx/blob/master/drivers/src/nrfx_uarte.c#L197
if unsafe { core::ptr::read_volatile(rxenable_reg) } == 0 {
workaround_succeded = true;
break;
} else {
// Need to sleep for 1us here
}
}
if !workaround_succeded {
panic!("Failed to apply workaround for UART");
}
let errors = r.errorsrc.read().bits();
// NB Safety: safe to write back the bits we just read to clear them
r.errorsrc.write(|w| unsafe { w.bits(errors) });
r.enable.write(|w| w.enable().disabled());
}
}
pub(in crate) fn drop_tx_rx(r: &pac::uarte0::RegisterBlock, s: &sealed::State) {
if s.tx_rx_refcount.fetch_sub(1, Ordering::Relaxed) == 1 {
// Finally we can disable, and we do so for the peripheral
// i.e. not just rx concerns.
r.enable.write(|w| w.enable().disabled());
gpio::deconfigure_pin(r.psel.rxd.read().bits());
gpio::deconfigure_pin(r.psel.txd.read().bits());
gpio::deconfigure_pin(r.psel.rts.read().bits());
gpio::deconfigure_pin(r.psel.cts.read().bits());
trace!("uarte tx and rx drop: done");
}
}
/// Interface to an UARTE peripheral that uses an additional timer and two PPI channels,
/// allowing it to implement the ReadUntilIdle trait.
pub struct UarteWithIdle<'d, U: Instance, T: TimerInstance> {
uarte: Uarte<'d, U>,
timer: Timer<'d, T>,
ppi_ch1: Ppi<'d, AnyConfigurableChannel, 1, 2>,
_ppi_ch2: Ppi<'d, AnyConfigurableChannel, 1, 1>,
}
impl<'d, U: Instance, T: TimerInstance> UarteWithIdle<'d, U, T> {
/// Create a new UARTE without hardware flow control
pub fn new(
uarte: impl Unborrow<Target = U> + 'd,
timer: impl Unborrow<Target = T> + 'd,
ppi_ch1: impl Unborrow<Target = impl ConfigurableChannel + 'd> + 'd,
ppi_ch2: impl Unborrow<Target = impl ConfigurableChannel + 'd> + 'd,
irq: impl Unborrow<Target = U::Interrupt> + 'd,
rxd: impl Unborrow<Target = impl GpioPin> + 'd,
txd: impl Unborrow<Target = impl GpioPin> + 'd,
config: Config,
) -> Self {
unborrow!(rxd, txd);
Self::new_inner(
uarte,
timer,
ppi_ch1,
ppi_ch2,
irq,
rxd.degrade(),
txd.degrade(),
None,
None,
config,
)
}
/// Create a new UARTE with hardware flow control (RTS/CTS)
pub fn new_with_rtscts(
uarte: impl Unborrow<Target = U> + 'd,
timer: impl Unborrow<Target = T> + 'd,
ppi_ch1: impl Unborrow<Target = impl ConfigurableChannel + 'd> + 'd,
ppi_ch2: impl Unborrow<Target = impl ConfigurableChannel + 'd> + 'd,
irq: impl Unborrow<Target = U::Interrupt> + 'd,
rxd: impl Unborrow<Target = impl GpioPin> + 'd,
txd: impl Unborrow<Target = impl GpioPin> + 'd,
cts: impl Unborrow<Target = impl GpioPin> + 'd,
rts: impl Unborrow<Target = impl GpioPin> + 'd,
config: Config,
) -> Self {
unborrow!(rxd, txd, cts, rts);
Self::new_inner(
uarte,
timer,
ppi_ch1,
ppi_ch2,
irq,
rxd.degrade(),
txd.degrade(),
Some(cts.degrade()),
Some(rts.degrade()),
config,
)
}
fn new_inner(
uarte: impl Unborrow<Target = U> + 'd,
timer: impl Unborrow<Target = T> + 'd,
ppi_ch1: impl Unborrow<Target = impl ConfigurableChannel + 'd> + 'd,
ppi_ch2: impl Unborrow<Target = impl ConfigurableChannel + 'd> + 'd,
irq: impl Unborrow<Target = U::Interrupt> + 'd,
rxd: AnyPin,
txd: AnyPin,
cts: Option<AnyPin>,
rts: Option<AnyPin>,
config: Config,
) -> Self {
let baudrate = config.baudrate;
let uarte = Uarte::new_inner(uarte, irq, rxd, txd, cts, rts, config);
let mut timer = Timer::new(timer);
unborrow!(ppi_ch1, ppi_ch2);
let r = U::regs();
// BAUDRATE register values are `baudrate * 2^32 / 16000000`
// source: https://devzone.nordicsemi.com/f/nordic-q-a/391/uart-baudrate-register-values
//
// We want to stop RX if line is idle for 2 bytes worth of time
// That is 20 bits (each byte is 1 start bit + 8 data bits + 1 stop bit)
// This gives us the amount of 16M ticks for 20 bits.
let timeout = 0x8000_0000 / (baudrate as u32 / 40);
timer.set_frequency(Frequency::F16MHz);
timer.cc(0).write(timeout);
timer.cc(0).short_compare_clear();
timer.cc(0).short_compare_stop();
let mut ppi_ch1 = Ppi::new_one_to_two(
ppi_ch1.degrade(),
Event::from_reg(&r.events_rxdrdy),
timer.task_clear(),
timer.task_start(),
);
ppi_ch1.enable();
let mut ppi_ch2 = Ppi::new_one_to_one(
ppi_ch2.degrade(),
timer.cc(0).event_compare(),
Task::from_reg(&r.tasks_stoprx),
);
ppi_ch2.enable();
Self {
uarte,
timer,
ppi_ch1: ppi_ch1,
_ppi_ch2: ppi_ch2,
}
}
pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
self.ppi_ch1.disable();
self.uarte.read(buffer).await
}
pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error> {
self.uarte.write(buffer).await
}
pub fn blocking_read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
self.ppi_ch1.disable();
self.uarte.blocking_read(buffer)
}
pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<(), Error> {
self.uarte.blocking_write(buffer)
}
pub async fn read_until_idle(&mut self, buffer: &mut [u8]) -> Result<usize, Error> {
if buffer.len() == 0 {
return Err(Error::BufferZeroLength);
}
if buffer.len() > EASY_DMA_SIZE {
return Err(Error::BufferTooLong);
}
let ptr = buffer.as_ptr();
let len = buffer.len();
let r = U::regs();
let s = U::state();
self.ppi_ch1.enable();
let drop = OnDrop::new(|| {
trace!("read drop: stopping");
self.timer.stop();
r.intenclr.write(|w| w.endrx().clear());
r.events_rxto.reset();
r.tasks_stoprx.write(|w| unsafe { w.bits(1) });
while r.events_endrx.read().bits() == 0 {}
trace!("read drop: stopped");
});
r.rxd.ptr.write(|w| unsafe { w.ptr().bits(ptr as u32) });
r.rxd.maxcnt.write(|w| unsafe { w.maxcnt().bits(len as _) });
r.events_endrx.reset();
r.intenset.write(|w| w.endrx().set());
compiler_fence(Ordering::SeqCst);
r.tasks_startrx.write(|w| unsafe { w.bits(1) });
poll_fn(|cx| {
s.endrx_waker.register(cx.waker());
if r.events_endrx.read().bits() != 0 {
return Poll::Ready(());
}
Poll::Pending
})
.await;
compiler_fence(Ordering::SeqCst);
let n = r.rxd.amount.read().amount().bits() as usize;
self.timer.stop();
r.events_rxstarted.reset();
drop.defuse();
Ok(n)
}
pub fn blocking_read_until_idle(&mut self, buffer: &mut [u8]) -> Result<usize, Error> {
if buffer.len() == 0 {
return Err(Error::BufferZeroLength);
}
if buffer.len() > EASY_DMA_SIZE {
return Err(Error::BufferTooLong);
}
let ptr = buffer.as_ptr();
let len = buffer.len();
let r = U::regs();
self.ppi_ch1.enable();
r.rxd.ptr.write(|w| unsafe { w.ptr().bits(ptr as u32) });
r.rxd.maxcnt.write(|w| unsafe { w.maxcnt().bits(len as _) });
r.events_endrx.reset();
r.intenclr.write(|w| w.endrx().clear());
compiler_fence(Ordering::SeqCst);
r.tasks_startrx.write(|w| unsafe { w.bits(1) });
while r.events_endrx.read().bits() == 0 {}
compiler_fence(Ordering::SeqCst);
let n = r.rxd.amount.read().amount().bits() as usize;
self.timer.stop();
r.events_rxstarted.reset();
Ok(n)
}
}
pub(crate) mod sealed {
use core::sync::atomic::AtomicU8;
use embassy::waitqueue::AtomicWaker;
use super::*;
pub struct State {
pub endrx_waker: AtomicWaker,
pub endtx_waker: AtomicWaker,
pub tx_rx_refcount: AtomicU8,
}
impl State {
pub const fn new() -> Self {
Self {
endrx_waker: AtomicWaker::new(),
endtx_waker: AtomicWaker::new(),
tx_rx_refcount: AtomicU8::new(0),
}
}
}
pub trait Instance {
fn regs() -> &'static pac::uarte0::RegisterBlock;
fn state() -> &'static State;
}
}
pub trait Instance: Unborrow<Target = Self> + sealed::Instance + 'static + Send {
type Interrupt: Interrupt;
}
macro_rules! impl_uarte {
($type:ident, $pac_type:ident, $irq:ident) => {
impl crate::uarte::sealed::Instance for peripherals::$type {
fn regs() -> &'static pac::uarte0::RegisterBlock {
unsafe { &*pac::$pac_type::ptr() }
}
fn state() -> &'static crate::uarte::sealed::State {
static STATE: crate::uarte::sealed::State = crate::uarte::sealed::State::new();
&STATE
}
}
impl crate::uarte::Instance for peripherals::$type {
type Interrupt = crate::interrupt::$irq;
}
};
}
// ====================
mod eh02 {
use super::*;
impl<'d, T: Instance> embedded_hal_02::blocking::serial::Write<u8> for Uarte<'d, T> {
type Error = Error;
fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(buffer)
}
fn bflush(&mut self) -> Result<(), Self::Error> {
Ok(())
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::serial::Write<u8> for UarteTx<'d, T> {
type Error = Error;
fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(buffer)
}
fn bflush(&mut self) -> Result<(), Self::Error> {
Ok(())
}
}
impl<'d, U: Instance, T: TimerInstance> embedded_hal_02::blocking::serial::Write<u8>
for UarteWithIdle<'d, U, T>
{
type Error = Error;
fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(buffer)
}
fn bflush(&mut self) -> Result<(), Self::Error> {
Ok(())
}
}
}
#[cfg(feature = "unstable-traits")]
mod eh1 {
use super::*;
impl embedded_hal_1::serial::Error for Error {
fn kind(&self) -> embedded_hal_1::serial::ErrorKind {
match *self {
Self::BufferTooLong => embedded_hal_1::serial::ErrorKind::Other,
Self::BufferZeroLength => embedded_hal_1::serial::ErrorKind::Other,
Self::DMABufferNotInDataMemory => embedded_hal_1::serial::ErrorKind::Other,
}
}
}
// =====================
impl<'d, T: Instance> embedded_hal_1::serial::ErrorType for Uarte<'d, T> {
type Error = Error;
}
impl<'d, T: Instance> embedded_hal_1::serial::blocking::Write for Uarte<'d, T> {
fn write(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(buffer)
}
fn flush(&mut self) -> Result<(), Self::Error> {
Ok(())
}
}
impl<'d, T: Instance> embedded_hal_1::serial::ErrorType for UarteTx<'d, T> {
type Error = Error;
}
impl<'d, T: Instance> embedded_hal_1::serial::blocking::Write for UarteTx<'d, T> {
fn write(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(buffer)
}
fn flush(&mut self) -> Result<(), Self::Error> {
Ok(())
}
}
impl<'d, T: Instance> embedded_hal_1::serial::ErrorType for UarteRx<'d, T> {
type Error = Error;
}
impl<'d, U: Instance, T: TimerInstance> embedded_hal_1::serial::ErrorType
for UarteWithIdle<'d, U, T>
{
type Error = Error;
}
}
cfg_if::cfg_if! {
if #[cfg(all(feature = "unstable-traits", feature = "nightly"))] {
use core::future::Future;
impl<'d, T: Instance> embedded_hal_async::serial::Read for Uarte<'d, T> {
type ReadFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
fn read<'a>(&'a mut self, buffer: &'a mut [u8]) -> Self::ReadFuture<'a> {
self.read(buffer)
}
}
impl<'d, T: Instance> embedded_hal_async::serial::Write for Uarte<'d, T> {
type WriteFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
fn write<'a>(&'a mut self, buffer: &'a [u8]) -> Self::WriteFuture<'a> {
self.write(buffer)
}
type FlushFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
fn flush<'a>(&'a mut self) -> Self::FlushFuture<'a> {
async move { Ok(()) }
}
}
impl<'d, T: Instance> embedded_hal_async::serial::Write for UarteTx<'d, T> {
type WriteFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
fn write<'a>(&'a mut self, buffer: &'a [u8]) -> Self::WriteFuture<'a> {
self.write(buffer)
}
type FlushFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
fn flush<'a>(&'a mut self) -> Self::FlushFuture<'a> {
async move { Ok(()) }
}
}
impl<'d, T: Instance> embedded_hal_async::serial::Read for UarteRx<'d, T> {
type ReadFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
fn read<'a>(&'a mut self, buffer: &'a mut [u8]) -> Self::ReadFuture<'a> {
self.read(buffer)
}
}
impl<'d, U: Instance, T: TimerInstance> embedded_hal_async::serial::Read
for UarteWithIdle<'d, U, T>
{
type ReadFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
fn read<'a>(&'a mut self, buffer: &'a mut [u8]) -> Self::ReadFuture<'a> {
self.read(buffer)
}
}
impl<'d, U: Instance, T: TimerInstance> embedded_hal_async::serial::Write
for UarteWithIdle<'d, U, T>
{
type WriteFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
fn write<'a>(&'a mut self, buffer: &'a [u8]) -> Self::WriteFuture<'a> {
self.write(buffer)
}
type FlushFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
fn flush<'a>(&'a mut self) -> Self::FlushFuture<'a> {
async move { Ok(()) }
}
}
}
}