embassy/embassy-rp/src/uart/buffered.rs

785 lines
24 KiB
Rust

use core::future::{poll_fn, Future};
use core::slice;
use core::task::Poll;
use atomic_polyfill::{AtomicU8, Ordering};
use embassy_hal_internal::atomic_ring_buffer::RingBuffer;
use embassy_sync::waitqueue::AtomicWaker;
use embassy_time::Timer;
use super::*;
use crate::clocks::clk_peri_freq;
use crate::interrupt::typelevel::{Binding, Interrupt};
use crate::{interrupt, RegExt};
pub struct State {
tx_waker: AtomicWaker,
tx_buf: RingBuffer,
rx_waker: AtomicWaker,
rx_buf: RingBuffer,
rx_error: AtomicU8,
}
// these must match bits 8..11 in UARTDR
const RXE_OVERRUN: u8 = 8;
const RXE_BREAK: u8 = 4;
const RXE_PARITY: u8 = 2;
const RXE_FRAMING: u8 = 1;
impl State {
pub const fn new() -> Self {
Self {
rx_buf: RingBuffer::new(),
tx_buf: RingBuffer::new(),
rx_waker: AtomicWaker::new(),
tx_waker: AtomicWaker::new(),
rx_error: AtomicU8::new(0),
}
}
}
pub struct BufferedUart<'d, T: Instance> {
pub(crate) rx: BufferedUartRx<'d, T>,
pub(crate) tx: BufferedUartTx<'d, T>,
}
pub struct BufferedUartRx<'d, T: Instance> {
pub(crate) phantom: PhantomData<&'d mut T>,
}
pub struct BufferedUartTx<'d, T: Instance> {
pub(crate) phantom: PhantomData<&'d mut T>,
}
pub(crate) fn init_buffers<'d, T: Instance + 'd>(
_irq: impl Binding<T::Interrupt, BufferedInterruptHandler<T>>,
tx_buffer: &'d mut [u8],
rx_buffer: &'d mut [u8],
) {
let state = T::buffered_state();
let len = tx_buffer.len();
unsafe { state.tx_buf.init(tx_buffer.as_mut_ptr(), len) };
let len = rx_buffer.len();
unsafe { state.rx_buf.init(rx_buffer.as_mut_ptr(), len) };
// From the datasheet:
// "The transmit interrupt is based on a transition through a level, rather
// than on the level itself. When the interrupt and the UART is enabled
// before any data is written to the transmit FIFO the interrupt is not set.
// The interrupt is only set, after written data leaves the single location
// of the transmit FIFO and it becomes empty."
//
// This means we can leave the interrupt enabled the whole time as long as
// we clear it after it happens. The downside is that the we manually have
// to pend the ISR when we want data transmission to start.
let regs = T::regs();
regs.uartimsc().write(|w| {
w.set_rxim(true);
w.set_rtim(true);
w.set_txim(true);
});
T::Interrupt::unpend();
unsafe { T::Interrupt::enable() };
}
impl<'d, T: Instance> BufferedUart<'d, T> {
pub fn new(
_uart: impl Peripheral<P = T> + 'd,
irq: impl Binding<T::Interrupt, BufferedInterruptHandler<T>>,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
tx_buffer: &'d mut [u8],
rx_buffer: &'d mut [u8],
config: Config,
) -> Self {
into_ref!(tx, rx);
super::Uart::<'d, T, Async>::init(Some(tx.map_into()), Some(rx.map_into()), None, None, config);
init_buffers::<T>(irq, tx_buffer, rx_buffer);
Self {
rx: BufferedUartRx { phantom: PhantomData },
tx: BufferedUartTx { phantom: PhantomData },
}
}
pub fn new_with_rtscts(
_uart: impl Peripheral<P = T> + 'd,
irq: impl Binding<T::Interrupt, BufferedInterruptHandler<T>>,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
rts: impl Peripheral<P = impl RtsPin<T>> + 'd,
cts: impl Peripheral<P = impl CtsPin<T>> + 'd,
tx_buffer: &'d mut [u8],
rx_buffer: &'d mut [u8],
config: Config,
) -> Self {
into_ref!(tx, rx, cts, rts);
super::Uart::<'d, T, Async>::init(
Some(tx.map_into()),
Some(rx.map_into()),
Some(rts.map_into()),
Some(cts.map_into()),
config,
);
init_buffers::<T>(irq, tx_buffer, rx_buffer);
Self {
rx: BufferedUartRx { phantom: PhantomData },
tx: BufferedUartTx { phantom: PhantomData },
}
}
pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<usize, Error> {
self.tx.blocking_write(buffer)
}
pub fn blocking_flush(&mut self) -> Result<(), Error> {
self.tx.blocking_flush()
}
pub fn blocking_read(&mut self, buffer: &mut [u8]) -> Result<usize, Error> {
self.rx.blocking_read(buffer)
}
pub fn busy(&self) -> bool {
self.tx.busy()
}
pub async fn send_break(&mut self, bits: u32) {
self.tx.send_break(bits).await
}
pub fn split(self) -> (BufferedUartRx<'d, T>, BufferedUartTx<'d, T>) {
(self.rx, self.tx)
}
}
impl<'d, T: Instance> BufferedUartRx<'d, T> {
pub fn new(
_uart: impl Peripheral<P = T> + 'd,
irq: impl Binding<T::Interrupt, BufferedInterruptHandler<T>>,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
rx_buffer: &'d mut [u8],
config: Config,
) -> Self {
into_ref!(rx);
super::Uart::<'d, T, Async>::init(None, Some(rx.map_into()), None, None, config);
init_buffers::<T>(irq, &mut [], rx_buffer);
Self { phantom: PhantomData }
}
pub fn new_with_rts(
_uart: impl Peripheral<P = T> + 'd,
irq: impl Binding<T::Interrupt, BufferedInterruptHandler<T>>,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
rts: impl Peripheral<P = impl RtsPin<T>> + 'd,
rx_buffer: &'d mut [u8],
config: Config,
) -> Self {
into_ref!(rx, rts);
super::Uart::<'d, T, Async>::init(None, Some(rx.map_into()), Some(rts.map_into()), None, config);
init_buffers::<T>(irq, &mut [], rx_buffer);
Self { phantom: PhantomData }
}
fn read<'a>(buf: &'a mut [u8]) -> impl Future<Output = Result<usize, Error>> + 'a
where
T: 'd,
{
poll_fn(move |cx| {
if let Poll::Ready(r) = Self::try_read(buf) {
return Poll::Ready(r);
}
T::buffered_state().rx_waker.register(cx.waker());
Poll::Pending
})
}
fn get_rx_error() -> Option<Error> {
let errs = T::buffered_state().rx_error.swap(0, Ordering::Relaxed);
if errs & RXE_OVERRUN != 0 {
Some(Error::Overrun)
} else if errs & RXE_BREAK != 0 {
Some(Error::Break)
} else if errs & RXE_PARITY != 0 {
Some(Error::Parity)
} else if errs & RXE_FRAMING != 0 {
Some(Error::Framing)
} else {
None
}
}
fn try_read(buf: &mut [u8]) -> Poll<Result<usize, Error>>
where
T: 'd,
{
if buf.is_empty() {
return Poll::Ready(Ok(0));
}
let state = T::buffered_state();
let mut rx_reader = unsafe { state.rx_buf.reader() };
let n = rx_reader.pop(|data| {
let n = data.len().min(buf.len());
buf[..n].copy_from_slice(&data[..n]);
n
});
let result = if n == 0 {
match Self::get_rx_error() {
None => return Poll::Pending,
Some(e) => Err(e),
}
} else {
Ok(n)
};
// (Re-)Enable the interrupt to receive more data in case it was
// disabled because the buffer was full or errors were detected.
let regs = T::regs();
regs.uartimsc().write_set(|w| {
w.set_rxim(true);
w.set_rtim(true);
});
Poll::Ready(result)
}
pub fn blocking_read(&mut self, buf: &mut [u8]) -> Result<usize, Error> {
loop {
match Self::try_read(buf) {
Poll::Ready(res) => return res,
Poll::Pending => continue,
}
}
}
fn fill_buf<'a>() -> impl Future<Output = Result<&'a [u8], Error>>
where
T: 'd,
{
poll_fn(move |cx| {
let state = T::buffered_state();
let mut rx_reader = unsafe { state.rx_buf.reader() };
let (p, n) = rx_reader.pop_buf();
let result = if n == 0 {
match Self::get_rx_error() {
None => {
state.rx_waker.register(cx.waker());
return Poll::Pending;
}
Some(e) => Err(e),
}
} else {
let buf = unsafe { slice::from_raw_parts(p, n) };
Ok(buf)
};
Poll::Ready(result)
})
}
fn consume(amt: usize) {
let state = T::buffered_state();
let mut rx_reader = unsafe { state.rx_buf.reader() };
rx_reader.pop_done(amt);
// (Re-)Enable the interrupt to receive more data in case it was
// disabled because the buffer was full or errors were detected.
let regs = T::regs();
regs.uartimsc().write_set(|w| {
w.set_rxim(true);
w.set_rtim(true);
});
}
}
impl<'d, T: Instance> BufferedUartTx<'d, T> {
pub fn new(
_uart: impl Peripheral<P = T> + 'd,
irq: impl Binding<T::Interrupt, BufferedInterruptHandler<T>>,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
tx_buffer: &'d mut [u8],
config: Config,
) -> Self {
into_ref!(tx);
super::Uart::<'d, T, Async>::init(Some(tx.map_into()), None, None, None, config);
init_buffers::<T>(irq, tx_buffer, &mut []);
Self { phantom: PhantomData }
}
pub fn new_with_cts(
_uart: impl Peripheral<P = T> + 'd,
irq: impl Binding<T::Interrupt, BufferedInterruptHandler<T>>,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
cts: impl Peripheral<P = impl CtsPin<T>> + 'd,
tx_buffer: &'d mut [u8],
config: Config,
) -> Self {
into_ref!(tx, cts);
super::Uart::<'d, T, Async>::init(Some(tx.map_into()), None, None, Some(cts.map_into()), config);
init_buffers::<T>(irq, tx_buffer, &mut []);
Self { phantom: PhantomData }
}
fn write<'a>(buf: &'a [u8]) -> impl Future<Output = Result<usize, Error>> + 'a {
poll_fn(move |cx| {
if buf.is_empty() {
return Poll::Ready(Ok(0));
}
let state = T::buffered_state();
let mut tx_writer = unsafe { state.tx_buf.writer() };
let n = tx_writer.push(|data| {
let n = data.len().min(buf.len());
data[..n].copy_from_slice(&buf[..n]);
n
});
if n == 0 {
state.tx_waker.register(cx.waker());
return Poll::Pending;
}
// The TX interrupt only triggers when the there was data in the
// FIFO and the number of bytes drops below a threshold. When the
// FIFO was empty we have to manually pend the interrupt to shovel
// TX data from the buffer into the FIFO.
T::Interrupt::pend();
Poll::Ready(Ok(n))
})
}
fn flush() -> impl Future<Output = Result<(), Error>> {
poll_fn(move |cx| {
let state = T::buffered_state();
if !state.tx_buf.is_empty() {
state.tx_waker.register(cx.waker());
return Poll::Pending;
}
Poll::Ready(Ok(()))
})
}
pub fn blocking_write(&mut self, buf: &[u8]) -> Result<usize, Error> {
if buf.is_empty() {
return Ok(0);
}
loop {
let state = T::buffered_state();
let mut tx_writer = unsafe { state.tx_buf.writer() };
let n = tx_writer.push(|data| {
let n = data.len().min(buf.len());
data[..n].copy_from_slice(&buf[..n]);
n
});
if n != 0 {
// The TX interrupt only triggers when the there was data in the
// FIFO and the number of bytes drops below a threshold. When the
// FIFO was empty we have to manually pend the interrupt to shovel
// TX data from the buffer into the FIFO.
T::Interrupt::pend();
return Ok(n);
}
}
}
pub fn blocking_flush(&mut self) -> Result<(), Error> {
loop {
let state = T::buffered_state();
if state.tx_buf.is_empty() {
return Ok(());
}
}
}
pub fn busy(&self) -> bool {
T::regs().uartfr().read().busy()
}
/// Assert a break condition after waiting for the transmit buffers to empty,
/// for the specified number of bit times. This condition must be asserted
/// for at least two frame times to be effective, `bits` will adjusted
/// according to frame size, parity, and stop bit settings to ensure this.
///
/// This method may block for a long amount of time since it has to wait
/// for the transmit fifo to empty, which may take a while on slow links.
pub async fn send_break(&mut self, bits: u32) {
let regs = T::regs();
let bits = bits.max({
let lcr = regs.uartlcr_h().read();
let width = lcr.wlen() as u32 + 5;
let parity = lcr.pen() as u32;
let stops = 1 + lcr.stp2() as u32;
2 * (1 + width + parity + stops)
});
let divx64 = (((regs.uartibrd().read().baud_divint() as u32) << 6)
+ regs.uartfbrd().read().baud_divfrac() as u32) as u64;
let div_clk = clk_peri_freq() as u64 * 64;
let wait_usecs = (1_000_000 * bits as u64 * divx64 * 16 + div_clk - 1) / div_clk;
Self::flush().await.unwrap();
while self.busy() {}
regs.uartlcr_h().write_set(|w| w.set_brk(true));
Timer::after_micros(wait_usecs).await;
regs.uartlcr_h().write_clear(|w| w.set_brk(true));
}
}
impl<'d, T: Instance> Drop for BufferedUartRx<'d, T> {
fn drop(&mut self) {
let state = T::buffered_state();
unsafe { state.rx_buf.deinit() }
// TX is inactive if the the buffer is not available.
// We can now unregister the interrupt handler
if state.tx_buf.len() == 0 {
T::Interrupt::disable();
}
}
}
impl<'d, T: Instance> Drop for BufferedUartTx<'d, T> {
fn drop(&mut self) {
let state = T::buffered_state();
unsafe { state.tx_buf.deinit() }
// RX is inactive if the the buffer is not available.
// We can now unregister the interrupt handler
if state.rx_buf.len() == 0 {
T::Interrupt::disable();
}
}
}
pub struct BufferedInterruptHandler<T: Instance> {
_uart: PhantomData<T>,
}
impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for BufferedInterruptHandler<T> {
unsafe fn on_interrupt() {
let r = T::regs();
if r.uartdmacr().read().rxdmae() {
return;
}
let s = T::buffered_state();
// Clear TX and error interrupt flags
// RX interrupt flags are cleared by reading from the FIFO.
let ris = r.uartris().read();
r.uarticr().write(|w| {
w.set_txic(ris.txris());
w.set_feic(ris.feris());
w.set_peic(ris.peris());
w.set_beic(ris.beris());
w.set_oeic(ris.oeris());
});
// Errors
if ris.feris() {
warn!("Framing error");
}
if ris.peris() {
warn!("Parity error");
}
if ris.beris() {
warn!("Break error");
}
if ris.oeris() {
warn!("Overrun error");
}
// RX
let mut rx_writer = unsafe { s.rx_buf.writer() };
let rx_buf = rx_writer.push_slice();
let mut n_read = 0;
let mut error = false;
for rx_byte in rx_buf {
if r.uartfr().read().rxfe() {
break;
}
let dr = r.uartdr().read();
if (dr.0 >> 8) != 0 {
s.rx_error.fetch_or((dr.0 >> 8) as u8, Ordering::Relaxed);
error = true;
// only fill the buffer with valid characters. the current character is fine
// if the error is an overrun, but if we add it to the buffer we'll report
// the overrun one character too late. drop it instead and pretend we were
// a bit slower at draining the rx fifo than we actually were.
// this is consistent with blocking uart error reporting.
break;
}
*rx_byte = dr.data();
n_read += 1;
}
if n_read > 0 {
rx_writer.push_done(n_read);
s.rx_waker.wake();
} else if error {
s.rx_waker.wake();
}
// Disable any further RX interrupts when the buffer becomes full or
// errors have occurred. This lets us buffer additional errors in the
// fifo without needing more error storage locations, and most applications
// will want to do a full reset of their uart state anyway once an error
// has happened.
if s.rx_buf.is_full() || error {
r.uartimsc().write_clear(|w| {
w.set_rxim(true);
w.set_rtim(true);
});
}
// TX
let mut tx_reader = unsafe { s.tx_buf.reader() };
let tx_buf = tx_reader.pop_slice();
let mut n_written = 0;
for tx_byte in tx_buf.iter_mut() {
if r.uartfr().read().txff() {
break;
}
r.uartdr().write(|w| w.set_data(*tx_byte));
n_written += 1;
}
if n_written > 0 {
tx_reader.pop_done(n_written);
s.tx_waker.wake();
}
// The TX interrupt only triggers once when the FIFO threshold is
// crossed. No need to disable it when the buffer becomes empty
// as it does re-trigger anymore once we have cleared it.
}
}
impl embedded_io::Error for Error {
fn kind(&self) -> embedded_io::ErrorKind {
embedded_io::ErrorKind::Other
}
}
impl<'d, T: Instance> embedded_io_async::ErrorType for BufferedUart<'d, T> {
type Error = Error;
}
impl<'d, T: Instance> embedded_io_async::ErrorType for BufferedUartRx<'d, T> {
type Error = Error;
}
impl<'d, T: Instance> embedded_io_async::ErrorType for BufferedUartTx<'d, T> {
type Error = Error;
}
impl<'d, T: Instance + 'd> embedded_io_async::Read for BufferedUart<'d, T> {
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
BufferedUartRx::<'d, T>::read(buf).await
}
}
impl<'d, T: Instance + 'd> embedded_io_async::Read for BufferedUartRx<'d, T> {
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
Self::read(buf).await
}
}
impl<'d, T: Instance + 'd> embedded_io_async::BufRead for BufferedUart<'d, T> {
async fn fill_buf(&mut self) -> Result<&[u8], Self::Error> {
BufferedUartRx::<'d, T>::fill_buf().await
}
fn consume(&mut self, amt: usize) {
BufferedUartRx::<'d, T>::consume(amt)
}
}
impl<'d, T: Instance + 'd> embedded_io_async::BufRead for BufferedUartRx<'d, T> {
async fn fill_buf(&mut self) -> Result<&[u8], Self::Error> {
Self::fill_buf().await
}
fn consume(&mut self, amt: usize) {
Self::consume(amt)
}
}
impl<'d, T: Instance + 'd> embedded_io_async::Write for BufferedUart<'d, T> {
async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
BufferedUartTx::<'d, T>::write(buf).await
}
async fn flush(&mut self) -> Result<(), Self::Error> {
BufferedUartTx::<'d, T>::flush().await
}
}
impl<'d, T: Instance + 'd> embedded_io_async::Write for BufferedUartTx<'d, T> {
async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
Self::write(buf).await
}
async fn flush(&mut self) -> Result<(), Self::Error> {
Self::flush().await
}
}
impl<'d, T: Instance + 'd> embedded_io::Read for BufferedUart<'d, T> {
fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
self.rx.blocking_read(buf)
}
}
impl<'d, T: Instance + 'd> embedded_io::Read for BufferedUartRx<'d, T> {
fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
self.blocking_read(buf)
}
}
impl<'d, T: Instance + 'd> embedded_io::Write for BufferedUart<'d, T> {
fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
self.tx.blocking_write(buf)
}
fn flush(&mut self) -> Result<(), Self::Error> {
self.tx.blocking_flush()
}
}
impl<'d, T: Instance + 'd> embedded_io::Write for BufferedUartTx<'d, T> {
fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
self.blocking_write(buf)
}
fn flush(&mut self) -> Result<(), Self::Error> {
self.blocking_flush()
}
}
impl<'d, T: Instance> embedded_hal_02::serial::Read<u8> for BufferedUartRx<'d, T> {
type Error = Error;
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
let r = T::regs();
if r.uartfr().read().rxfe() {
return Err(nb::Error::WouldBlock);
}
let dr = r.uartdr().read();
if dr.oe() {
Err(nb::Error::Other(Error::Overrun))
} else if dr.be() {
Err(nb::Error::Other(Error::Break))
} else if dr.pe() {
Err(nb::Error::Other(Error::Parity))
} else if dr.fe() {
Err(nb::Error::Other(Error::Framing))
} else {
Ok(dr.data())
}
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::serial::Write<u8> for BufferedUartTx<'d, T> {
type Error = Error;
fn bwrite_all(&mut self, mut buffer: &[u8]) -> Result<(), Self::Error> {
while !buffer.is_empty() {
match self.blocking_write(buffer) {
Ok(0) => panic!("zero-length write."),
Ok(n) => buffer = &buffer[n..],
Err(e) => return Err(e),
}
}
Ok(())
}
fn bflush(&mut self) -> Result<(), Self::Error> {
self.blocking_flush()
}
}
impl<'d, T: Instance> embedded_hal_02::serial::Read<u8> for BufferedUart<'d, T> {
type Error = Error;
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
embedded_hal_02::serial::Read::read(&mut self.rx)
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::serial::Write<u8> for BufferedUart<'d, T> {
type Error = Error;
fn bwrite_all(&mut self, mut buffer: &[u8]) -> Result<(), Self::Error> {
while !buffer.is_empty() {
match self.blocking_write(buffer) {
Ok(0) => panic!("zero-length write."),
Ok(n) => buffer = &buffer[n..],
Err(e) => return Err(e),
}
}
Ok(())
}
fn bflush(&mut self) -> Result<(), Self::Error> {
self.blocking_flush()
}
}
impl<'d, T: Instance> embedded_hal_nb::serial::ErrorType for BufferedUartRx<'d, T> {
type Error = Error;
}
impl<'d, T: Instance> embedded_hal_nb::serial::ErrorType for BufferedUartTx<'d, T> {
type Error = Error;
}
impl<'d, T: Instance> embedded_hal_nb::serial::ErrorType for BufferedUart<'d, T> {
type Error = Error;
}
impl<'d, T: Instance> embedded_hal_nb::serial::Read for BufferedUartRx<'d, T> {
fn read(&mut self) -> nb::Result<u8, Self::Error> {
embedded_hal_02::serial::Read::read(self)
}
}
impl<'d, T: Instance> embedded_hal_nb::serial::Write for BufferedUartTx<'d, T> {
fn write(&mut self, char: u8) -> nb::Result<(), Self::Error> {
self.blocking_write(&[char]).map(drop).map_err(nb::Error::Other)
}
fn flush(&mut self) -> nb::Result<(), Self::Error> {
self.blocking_flush().map_err(nb::Error::Other)
}
}
impl<'d, T: Instance> embedded_hal_nb::serial::Read for BufferedUart<'d, T> {
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
embedded_hal_02::serial::Read::read(&mut self.rx)
}
}
impl<'d, T: Instance> embedded_hal_nb::serial::Write for BufferedUart<'d, T> {
fn write(&mut self, char: u8) -> nb::Result<(), Self::Error> {
self.blocking_write(&[char]).map(drop).map_err(nb::Error::Other)
}
fn flush(&mut self) -> nb::Result<(), Self::Error> {
self.blocking_flush().map_err(nb::Error::Other)
}
}