embassy/embassy-nrf/src/i2s.rs
2022-11-13 01:41:32 +01:00

669 lines
17 KiB
Rust

#![macro_use]
//! I2S
use core::future::poll_fn;
use core::sync::atomic::{compiler_fence, Ordering};
use core::task::Poll;
use embassy_cortex_m::interrupt::{InterruptExt, Priority};
use embassy_hal_common::drop::OnDrop;
use embassy_hal_common::{into_ref, PeripheralRef};
//use crate::gpio::sealed::Pin as _;
use crate::gpio::{AnyPin, Pin as GpioPin};
use crate::interrupt::Interrupt;
use crate::pac::i2s::{RegisterBlock, CONFIG, PSEL};
use crate::Peripheral;
// TODO: Define those in lib.rs somewhere else
//
// I2S EasyDMA MAXCNT bit length = 14
const MAX_DMA_MAXCNT: u32 = 1 << 14;
// Limits for Easy DMA - it can only read from data ram
pub const SRAM_LOWER: usize = 0x2000_0000;
pub const SRAM_UPPER: usize = 0x3000_0000;
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub enum Error {
BufferTooLong,
BufferZeroLength,
DMABufferNotInDataMemory,
BufferMisaligned,
// TODO: add other error variants.
}
pub const MODE_MASTER_8000: Mode = Mode::Master {
freq: MckFreq::_32MDiv125,
ratio: Ratio::_32x,
}; // error = 0
pub const MODE_MASTER_11025: Mode = Mode::Master {
freq: MckFreq::_32MDiv15,
ratio: Ratio::_192x,
}; // error = 86
pub const MODE_MASTER_16000: Mode = Mode::Master {
freq: MckFreq::_32MDiv21,
ratio: Ratio::_96x,
}; // error = 127
pub const MODE_MASTER_22050: Mode = Mode::Master {
freq: MckFreq::_32MDiv15,
ratio: Ratio::_96x,
}; // error = 172
pub const MODE_MASTER_32000: Mode = Mode::Master {
freq: MckFreq::_32MDiv21,
ratio: Ratio::_48x,
}; // error = 254
pub const MODE_MASTER_44100: Mode = Mode::Master {
freq: MckFreq::_32MDiv15,
ratio: Ratio::_48x,
}; // error = 344
pub const MODE_MASTER_48000: Mode = Mode::Master {
freq: MckFreq::_32MDiv21,
ratio: Ratio::_32x,
}; // error = 381
#[derive(Clone)]
#[non_exhaustive]
pub struct Config {
pub mode: Mode,
pub swidth: SampleWidth,
pub align: Align,
pub format: Format,
pub channels: Channels,
}
impl Default for Config {
fn default() -> Self {
Self {
mode: MODE_MASTER_32000,
swidth: SampleWidth::_16bit,
align: Align::Left,
format: Format::I2S,
channels: Channels::Stereo,
}
}
}
/// I2S Mode
#[derive(Debug, Eq, PartialEq, Clone, Copy)]
pub enum Mode {
Master { freq: MckFreq, ratio: Ratio },
Slave,
}
impl Mode {
pub fn sample_rate(&self) -> Option<u32> {
match self {
Mode::Master { freq, ratio } => Some(freq.to_frequency() / ratio.to_divisor()),
Mode::Slave => None,
}
}
}
/// Master clock generator frequency.
#[derive(Debug, Eq, PartialEq, Clone, Copy)]
pub enum MckFreq {
_32MDiv8,
_32MDiv10,
_32MDiv11,
_32MDiv15,
_32MDiv16,
_32MDiv21,
_32MDiv23,
_32MDiv30,
_32MDiv31,
_32MDiv32,
_32MDiv42,
_32MDiv63,
_32MDiv125,
}
impl MckFreq {
const REGISTER_VALUES: &[u32] = &[
0x20000000, 0x18000000, 0x16000000, 0x11000000, 0x10000000, 0x0C000000, 0x0B000000, 0x08800000, 0x08400000,
0x08000000, 0x06000000, 0x04100000, 0x020C0000,
];
const FREQUENCIES: &[u32] = &[
4000000, 3200000, 2909090, 2133333, 2000000, 1523809, 1391304, 1066666, 1032258, 1000000, 761904, 507936,
256000,
];
pub fn to_register_value(&self) -> u32 {
Self::REGISTER_VALUES[usize::from(*self)]
}
pub fn to_frequency(&self) -> u32 {
Self::FREQUENCIES[usize::from(*self)]
}
}
impl From<MckFreq> for usize {
fn from(variant: MckFreq) -> Self {
variant as _
}
}
/// MCK / LRCK ratio.
#[derive(Debug, Eq, PartialEq, Clone, Copy)]
pub enum Ratio {
_32x,
_48x,
_64x,
_96x,
_128x,
_192x,
_256x,
_384x,
_512x,
}
impl Ratio {
const RATIOS: &[u32] = &[32, 48, 64, 96, 128, 192, 256, 384, 512];
pub fn to_divisor(&self) -> u32 {
Self::RATIOS[u8::from(*self) as usize]
}
}
impl From<Ratio> for u8 {
fn from(variant: Ratio) -> Self {
variant as _
}
}
#[derive(Debug, Eq, PartialEq, Clone, Copy)]
pub enum SampleWidth {
_8bit,
_16bit,
_24bit,
}
impl From<SampleWidth> for u8 {
fn from(variant: SampleWidth) -> Self {
variant as _
}
}
/// Alignment of sample within a frame.
#[derive(Debug, Eq, PartialEq, Clone, Copy)]
pub enum Align {
Left,
Right,
}
impl From<Align> for bool {
fn from(variant: Align) -> Self {
match variant {
Align::Left => false,
Align::Right => true,
}
}
}
/// Frame format.
#[derive(Debug, Eq, PartialEq, Clone, Copy)]
pub enum Format {
I2S,
Aligned,
}
impl From<Format> for bool {
fn from(variant: Format) -> Self {
match variant {
Format::I2S => false,
Format::Aligned => true,
}
}
}
/// Enable channels.
#[derive(Debug, Eq, PartialEq, Clone, Copy)]
pub enum Channels {
Stereo,
Left,
Right,
}
impl From<Channels> for u8 {
fn from(variant: Channels) -> Self {
variant as _
}
}
/// Interface to the UARTE peripheral using EasyDMA to offload the transmission and reception workload.
///
/// For more details about EasyDMA, consult the module documentation.
pub struct I2S<'d, T: Instance> {
output: I2sOutput<'d, T>,
input: I2sInput<'d, T>,
}
/// Transmitter interface to the UARTE peripheral obtained
/// via [Uarte]::split.
pub struct I2sOutput<'d, T: Instance> {
_p: PeripheralRef<'d, T>,
}
/// Receiver interface to the UARTE peripheral obtained
/// via [Uarte]::split.
pub struct I2sInput<'d, T: Instance> {
_p: PeripheralRef<'d, T>,
}
impl<'d, T: Instance> I2S<'d, T> {
/// Create a new I2S
pub fn new(
i2s: impl Peripheral<P = T> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
mck: impl Peripheral<P = impl GpioPin> + 'd,
sck: impl Peripheral<P = impl GpioPin> + 'd,
lrck: impl Peripheral<P = impl GpioPin> + 'd,
sdin: impl Peripheral<P = impl GpioPin> + 'd,
sdout: impl Peripheral<P = impl GpioPin> + 'd,
config: Config,
) -> Self {
into_ref!(mck, sck, lrck, sdin, sdout);
Self::new_inner(
i2s,
irq,
mck.map_into(),
sck.map_into(),
lrck.map_into(),
sdin.map_into(),
sdout.map_into(),
config,
)
}
fn new_inner(
i2s: impl Peripheral<P = T> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
mck: PeripheralRef<'d, AnyPin>,
sck: PeripheralRef<'d, AnyPin>,
lrck: PeripheralRef<'d, AnyPin>,
sdin: PeripheralRef<'d, AnyPin>,
sdout: PeripheralRef<'d, AnyPin>,
config: Config,
) -> Self {
into_ref!(i2s, irq, mck, sck, lrck, sdin, sdout);
let r = T::regs();
Self::apply_config(&r.config, &config);
Self::select_pins(&r.psel, mck, sck, lrck, sdin, sdout);
Self::setup_interrupt(irq, r);
r.enable.write(|w| w.enable().enabled());
Self {
output: I2sOutput {
_p: unsafe { i2s.clone_unchecked() },
},
input: I2sInput { _p: i2s },
}
}
/// Enables the I2S module.
#[inline(always)]
pub fn enable(&self) -> &Self {
let r = T::regs();
r.enable.write(|w| w.enable().enabled());
self
}
/// Disables the I2S module.
#[inline(always)]
pub fn disable(&self) -> &Self {
let r = T::regs();
r.enable.write(|w| w.enable().disabled());
self
}
/// Starts I2S transfer.
#[inline(always)]
pub fn start(&self) -> &Self {
let r = T::regs();
self.enable();
r.tasks_start.write(|w| unsafe { w.bits(1) });
self
}
/// Stops the I2S transfer and waits until it has stopped.
#[inline(always)]
pub async fn stop(&self) {
todo!()
}
/// Enables/disables I2S transmission (TX).
#[inline(always)]
pub fn set_tx_enabled(&self, enabled: bool) -> &Self {
let r = T::regs();
r.config.txen.write(|w| w.txen().bit(enabled));
self
}
/// Enables/disables I2S reception (RX).
#[inline(always)]
pub fn set_rx_enabled(&self, enabled: bool) -> &Self {
let r = T::regs();
r.config.rxen.write(|w| w.rxen().bit(enabled));
self
}
/// Transmits the given `buffer`.
/// Buffer address must be 4 byte aligned and located in RAM.
pub async fn tx<B>(&mut self, buffer: B) -> Result<(), Error>
where
B: Buffer,
{
self.output.tx(buffer).await
}
/// Receives data into the given `buffer` until it's filled.
/// Buffer address must be 4 byte aligned and located in RAM.
pub async fn rx<B>(&mut self, buffer: B) -> Result<(), Error>
where
B: Buffer,
{
self.input.rx(buffer).await
}
fn apply_config(c: &CONFIG, config: &Config) {
match config.mode {
Mode::Master { freq, ratio } => {
c.mode.write(|w| w.mode().master());
c.mcken.write(|w| w.mcken().enabled());
c.mckfreq
.write(|w| unsafe { w.mckfreq().bits(freq.to_register_value()) });
c.ratio.write(|w| unsafe { w.ratio().bits(ratio.into()) });
}
Mode::Slave => {
c.mode.write(|w| w.mode().slave());
}
};
c.swidth.write(|w| unsafe { w.swidth().bits(config.swidth.into()) });
c.align.write(|w| w.align().bit(config.align.into()));
c.format.write(|w| w.format().bit(config.format.into()));
c.channels
.write(|w| unsafe { w.channels().bits(config.channels.into()) });
}
fn select_pins(
psel: &PSEL,
mck: PeripheralRef<'d, AnyPin>,
sck: PeripheralRef<'d, AnyPin>,
lrck: PeripheralRef<'d, AnyPin>,
sdin: PeripheralRef<'d, AnyPin>,
sdout: PeripheralRef<'d, AnyPin>,
) {
psel.mck.write(|w| {
unsafe { w.bits(mck.psel_bits()) };
w.connect().connected()
});
psel.sck.write(|w| {
unsafe { w.bits(sck.psel_bits()) };
w.connect().connected()
});
psel.lrck.write(|w| {
unsafe { w.bits(lrck.psel_bits()) };
w.connect().connected()
});
psel.sdin.write(|w| {
unsafe { w.bits(sdin.psel_bits()) };
w.connect().connected()
});
psel.sdout.write(|w| {
unsafe { w.bits(sdout.psel_bits()) };
w.connect().connected()
});
}
fn setup_interrupt(irq: PeripheralRef<'d, T::Interrupt>, r: &RegisterBlock) {
irq.set_handler(Self::on_interrupt);
// irq.set_priority(Priority::P1); // TODO review priorities
irq.unpend();
irq.enable();
r.intenclr.write(|w| w.rxptrupd().clear());
r.intenclr.write(|w| w.txptrupd().clear());
r.events_rxptrupd.reset();
r.events_txptrupd.reset();
r.intenset.write(|w| w.rxptrupd().set());
r.intenset.write(|w| w.txptrupd().set());
}
fn on_interrupt(_: *mut ()) {
let r = T::regs();
let s = T::state();
if r.events_txptrupd.read().bits() != 0 {
trace!("[{}] INT", s.seq.load(Ordering::Relaxed));
s.tx_waker.wake();
r.intenclr.write(|w| w.txptrupd().clear());
}
if r.events_rxptrupd.read().bits() != 0 {
s.rx_waker.wake();
r.intenclr.write(|w| w.rxptrupd().clear());
}
s.overruns.fetch_add(1, Ordering::Relaxed);
}
}
impl<'d, T: Instance> I2sOutput<'d, T> {
/// Transmits the given `buffer`.
/// Buffer address must be 4 byte aligned and located in RAM.
#[allow(unused_mut)]
pub async fn tx<B>(&mut self, buffer: B) -> Result<(), Error>
where
B: Buffer,
{
let ptr = buffer.bytes_ptr();
let len = buffer.bytes_len();
if ptr as u32 % 4 != 0 {
return Err(Error::BufferMisaligned);
}
if (ptr as usize) < SRAM_LOWER || (ptr as usize) > SRAM_UPPER {
return Err(Error::DMABufferNotInDataMemory);
}
let maxcnt = ((len + core::mem::size_of::<u32>() - 1) / core::mem::size_of::<u32>()) as u32;
if maxcnt > MAX_DMA_MAXCNT {
return Err(Error::BufferTooLong);
}
let r = T::regs();
let s = T::state();
let seq = s.seq.fetch_add(1, Ordering::Relaxed);
if r.events_txptrupd.read().bits() != 0 && seq > 0 {
info!("XRUN!");
loop {}
}
let drop = OnDrop::new(move || {
trace!("write drop: stopping");
r.intenclr.write(|w| w.txptrupd().clear());
r.events_txptrupd.reset();
r.config.txen.write(|w| w.txen().disabled());
// TX is stopped almost instantly, spinning is fine.
while r.events_txptrupd.read().bits() == 0 {}
trace!("write drop: stopped");
});
trace!("[{}] PTR", s.seq.load(Ordering::Relaxed));
r.txd.ptr.write(|w| unsafe { w.ptr().bits(ptr as u32) });
r.rxtxd.maxcnt.write(|w| unsafe { w.bits(maxcnt) });
compiler_fence(Ordering::SeqCst);
poll_fn(|cx| {
s.tx_waker.register(cx.waker());
if r.events_txptrupd.read().bits() != 0 || seq == 0 {
trace!("[{}] POLL Ready", s.seq.load(Ordering::Relaxed));
r.events_txptrupd.reset();
r.intenset.write(|w| w.txptrupd().set());
let overruns = s.overruns.fetch_sub(1, Ordering::Relaxed);
if overruns - 1 != 0 {
warn!("XRUN: {}", overruns);
s.overruns.store(0, Ordering::Relaxed)
}
Poll::Ready(())
} else {
trace!("[{}] POLL Pending", s.seq.load(Ordering::Relaxed));
Poll::Pending
}
})
.await;
compiler_fence(Ordering::SeqCst);
drop.defuse();
Ok(())
}
}
impl<'d, T: Instance> I2sInput<'d, T> {
/// Receives into the given `buffer`.
/// Buffer address must be 4 byte aligned and located in RAM.
#[allow(unused_mut)]
pub async fn rx<B>(&mut self, buffer: B) -> Result<(), Error>
where
B: Buffer,
{
let ptr = buffer.bytes_ptr();
let len = buffer.bytes_len();
if ptr as u32 % 4 != 0 {
return Err(Error::BufferMisaligned);
}
if (ptr as usize) < SRAM_LOWER || (ptr as usize) > SRAM_UPPER {
return Err(Error::DMABufferNotInDataMemory);
}
let maxcnt = ((len + core::mem::size_of::<u32>() - 1) / core::mem::size_of::<u32>()) as u32;
if maxcnt > MAX_DMA_MAXCNT {
return Err(Error::BufferTooLong);
}
let r = T::regs();
let _s = T::state();
// TODO we can not progress until the last buffer written in RXD.PTR
// has started the transmission.
// We can use some sync primitive from `embassy-sync`.
r.rxd.ptr.write(|w| unsafe { w.ptr().bits(ptr as u32) });
r.rxtxd.maxcnt.write(|w| unsafe { w.bits(maxcnt) });
Ok(())
}
}
pub trait Buffer: Sized {
fn bytes_ptr(&self) -> *const u8;
fn bytes_len(&self) -> usize;
}
impl Buffer for &[u8] {
#[inline]
fn bytes_ptr(&self) -> *const u8 {
self.as_ptr()
}
#[inline]
fn bytes_len(&self) -> usize {
self.len()
}
}
impl Buffer for &[i16] {
#[inline]
fn bytes_ptr(&self) -> *const u8 {
self.as_ptr() as *const u8
}
#[inline]
fn bytes_len(&self) -> usize {
self.len() * core::mem::size_of::<i16>()
}
}
impl Buffer for &[i32] {
#[inline]
fn bytes_ptr(&self) -> *const u8 {
self.as_ptr() as *const u8
}
#[inline]
fn bytes_len(&self) -> usize {
self.len() * core::mem::size_of::<i16>()
}
}
pub(crate) mod sealed {
use core::sync::atomic::AtomicI32;
use embassy_sync::waitqueue::AtomicWaker;
use super::*;
pub struct State {
pub rx_waker: AtomicWaker,
pub tx_waker: AtomicWaker,
pub overruns: AtomicI32,
pub seq: AtomicI32,
}
impl State {
pub const fn new() -> Self {
Self {
rx_waker: AtomicWaker::new(),
tx_waker: AtomicWaker::new(),
overruns: AtomicI32::new(0),
seq: AtomicI32::new(0),
}
}
}
pub trait Instance {
fn regs() -> &'static crate::pac::i2s::RegisterBlock;
fn state() -> &'static State;
}
}
pub trait Instance: Peripheral<P = Self> + sealed::Instance + 'static + Send {
type Interrupt: Interrupt;
}
// TODO: Unsure why this macro is flagged as unused by CI when in fact it's used elsewhere?
#[allow(unused_macros)]
macro_rules! impl_i2s {
($type:ident, $pac_type:ident, $irq:ident) => {
impl crate::i2s::sealed::Instance for peripherals::$type {
fn regs() -> &'static pac::i2s::RegisterBlock {
unsafe { &*pac::$pac_type::ptr() }
}
fn state() -> &'static crate::i2s::sealed::State {
static STATE: crate::i2s::sealed::State = crate::i2s::sealed::State::new();
&STATE
}
}
impl crate::i2s::Instance for peripherals::$type {
type Interrupt = crate::interrupt::$irq;
}
};
}