embassy/embassy-stm32/src/pwm/advanced_pwm.rs
2023-07-02 22:00:50 -05:00

397 lines
13 KiB
Rust

use core::marker::PhantomData;
use embassy_hal_common::{into_ref, PeripheralRef};
use super::*;
#[allow(unused_imports)]
use crate::gpio::sealed::{AFType, Pin};
use crate::gpio::AnyPin;
use crate::time::Hertz;
use crate::Peripheral;
pub enum Source {
Master,
ChA,
ChB,
ChC,
ChD,
ChE,
}
pub struct BurstController<T: HighResolutionCaptureCompare16bitInstance> {
phantom: PhantomData<T>,
}
pub struct Master<T: HighResolutionCaptureCompare16bitInstance> {
phantom: PhantomData<T>,
}
pub struct ChA<T: HighResolutionCaptureCompare16bitInstance> {
phantom: PhantomData<T>,
}
pub struct ChB<T: HighResolutionCaptureCompare16bitInstance> {
phantom: PhantomData<T>,
}
pub struct ChC<T: HighResolutionCaptureCompare16bitInstance> {
phantom: PhantomData<T>,
}
pub struct ChD<T: HighResolutionCaptureCompare16bitInstance> {
phantom: PhantomData<T>,
}
pub struct ChE<T: HighResolutionCaptureCompare16bitInstance> {
phantom: PhantomData<T>,
}
mod sealed {
use crate::pwm::HighResolutionCaptureCompare16bitInstance;
pub trait AdvancedChannel<T: HighResolutionCaptureCompare16bitInstance> {
fn raw() -> usize;
}
}
pub trait AdvancedChannel<T: HighResolutionCaptureCompare16bitInstance>: sealed::AdvancedChannel<T> {}
pub struct PwmPin<'d, Perip, Channel> {
_pin: PeripheralRef<'d, AnyPin>,
phantom: PhantomData<(Perip, Channel)>,
}
pub struct ComplementaryPwmPin<'d, Perip, Channel> {
_pin: PeripheralRef<'d, AnyPin>,
phantom: PhantomData<(Perip, Channel)>,
}
macro_rules! advanced_channel_impl {
($new_chx:ident, $channel:tt, $ch_num:expr, $pin_trait:ident, $complementary_pin_trait:ident) => {
impl<'d, Perip: HighResolutionCaptureCompare16bitInstance> PwmPin<'d, Perip, $channel<Perip>> {
pub fn $new_chx(pin: impl Peripheral<P = impl $pin_trait<Perip>> + 'd) -> Self {
into_ref!(pin);
critical_section::with(|_| {
pin.set_low();
pin.set_as_af(pin.af_num(), AFType::OutputPushPull);
#[cfg(gpio_v2)]
pin.set_speed(crate::gpio::Speed::VeryHigh);
});
PwmPin {
_pin: pin.map_into(),
phantom: PhantomData,
}
}
}
impl<'d, Perip: HighResolutionCaptureCompare16bitInstance> ComplementaryPwmPin<'d, Perip, $channel<Perip>> {
pub fn $new_chx(pin: impl Peripheral<P = impl $complementary_pin_trait<Perip>> + 'd) -> Self {
into_ref!(pin);
critical_section::with(|_| {
pin.set_low();
pin.set_as_af(pin.af_num(), AFType::OutputPushPull);
#[cfg(gpio_v2)]
pin.set_speed(crate::gpio::Speed::VeryHigh);
});
ComplementaryPwmPin {
_pin: pin.map_into(),
phantom: PhantomData,
}
}
}
impl<T: HighResolutionCaptureCompare16bitInstance> sealed::AdvancedChannel<T> for $channel<T> {
fn raw() -> usize {
$ch_num
}
}
impl<T: HighResolutionCaptureCompare16bitInstance> AdvancedChannel<T> for $channel<T> {}
};
}
advanced_channel_impl!(new_cha, ChA, 0, ChannelAPin, ChannelAComplementaryPin);
advanced_channel_impl!(new_chb, ChB, 1, ChannelBPin, ChannelBComplementaryPin);
advanced_channel_impl!(new_chc, ChC, 2, ChannelCPin, ChannelCComplementaryPin);
advanced_channel_impl!(new_chd, ChD, 3, ChannelDPin, ChannelDComplementaryPin);
advanced_channel_impl!(new_che, ChE, 4, ChannelEPin, ChannelEComplementaryPin);
/// Struct used to divide a high resolution timer into multiple channels
pub struct AdvancedPwm<'d, T: HighResolutionCaptureCompare16bitInstance> {
_inner: PeripheralRef<'d, T>,
pub master: Master<T>,
pub burst_controller: BurstController<T>,
pub ch_a: ChA<T>,
pub ch_b: ChB<T>,
pub ch_c: ChC<T>,
pub ch_d: ChD<T>,
pub ch_e: ChE<T>,
}
impl<'d, T: HighResolutionCaptureCompare16bitInstance> AdvancedPwm<'d, T> {
pub fn new(
tim: impl Peripheral<P = T> + 'd,
_cha: Option<PwmPin<'d, T, ChA<T>>>,
_chan: Option<ComplementaryPwmPin<'d, T, ChA<T>>>,
_chb: Option<PwmPin<'d, T, ChB<T>>>,
_chbn: Option<ComplementaryPwmPin<'d, T, ChB<T>>>,
_chc: Option<PwmPin<'d, T, ChC<T>>>,
_chcn: Option<ComplementaryPwmPin<'d, T, ChC<T>>>,
_chd: Option<PwmPin<'d, T, ChD<T>>>,
_chdn: Option<ComplementaryPwmPin<'d, T, ChD<T>>>,
_che: Option<PwmPin<'d, T, ChE<T>>>,
_chen: Option<ComplementaryPwmPin<'d, T, ChE<T>>>,
) -> Self {
Self::new_inner(tim)
}
fn new_inner(tim: impl Peripheral<P = T> + 'd) -> Self {
into_ref!(tim);
T::enable();
<T as crate::rcc::sealed::RccPeripheral>::reset();
// // Enable and and stabilize the DLL
// T::regs().dllcr().modify(|w| {
// // w.set_calen(true);
// // w.set_calrte(11);
// w.set_cal(true);
// });
//
// debug!("wait for dll calibration");
// while !T::regs().isr().read().dllrdy() {}
//
// debug!("dll calibration complete");
Self {
_inner: tim,
master: Master { phantom: PhantomData },
burst_controller: BurstController { phantom: PhantomData },
ch_a: ChA { phantom: PhantomData },
ch_b: ChB { phantom: PhantomData },
ch_c: ChC { phantom: PhantomData },
ch_d: ChD { phantom: PhantomData },
ch_e: ChE { phantom: PhantomData },
}
}
}
impl<T: HighResolutionCaptureCompare16bitInstance> BurstController<T> {
pub fn set_source(&mut self, _source: Source) {
todo!("burst mode control registers not implemented")
}
}
/// Represents a fixed-frequency bridge converter
///
/// Our implementation of the bridge converter uses a single channel and three compare registers,
/// allowing implementation of a synchronous buck or boost converter in continuous or discontinuous
/// conduction mode.
///
/// It is important to remember that in synchronous topologies, energy can flow in reverse during
/// light loading conditions, and that the low-side switch must be active for a short time to drive
/// a bootstrapped high-side switch.
pub struct BridgeConverter<T: HighResolutionCaptureCompare16bitInstance, C: AdvancedChannel<T>> {
timer: PhantomData<T>,
channel: PhantomData<C>,
dead_time: u16,
primary_duty: u16,
min_secondary_duty: u16,
max_secondary_duty: u16,
}
impl<T: HighResolutionCaptureCompare16bitInstance, C: AdvancedChannel<T>> BridgeConverter<T, C> {
pub fn new(_channel: C, frequency: Hertz) -> Self {
use crate::pac::hrtim::vals::{Activeeffect, Inactiveeffect};
T::set_channel_frequency(C::raw(), frequency);
// Always enable preload
T::regs().tim(C::raw()).cr().modify(|w| {
w.set_preen(true);
w.set_repu(true);
w.set_cont(true);
});
// Enable timer outputs
T::regs().oenr().modify(|w| {
w.set_t1oen(C::raw(), true);
w.set_t2oen(C::raw(), true);
});
// The dead-time generation unit cannot be used because it forces the other output
// to be completely complementary to the first output, which restricts certain waveforms
// Therefore, software-implemented dead time must be used when setting the duty cycles
// Set output 1 to active on a period event
T::regs()
.tim(C::raw())
.setr(0)
.modify(|w| w.set_per(Activeeffect::SETACTIVE));
// Set output 1 to inactive on a compare 1 event
T::regs()
.tim(C::raw())
.rstr(0)
.modify(|w| w.set_cmp(0, Inactiveeffect::SETINACTIVE));
// Set output 2 to active on a compare 2 event
T::regs()
.tim(C::raw())
.setr(1)
.modify(|w| w.set_cmp(1, Activeeffect::SETACTIVE));
// Set output 2 to inactive on a compare 3 event
T::regs()
.tim(C::raw())
.rstr(1)
.modify(|w| w.set_cmp(2, Inactiveeffect::SETINACTIVE));
Self {
timer: PhantomData,
channel: PhantomData,
dead_time: 0,
primary_duty: 0,
min_secondary_duty: 0,
max_secondary_duty: 0,
}
}
pub fn start(&mut self) {
T::regs().mcr().modify(|w| w.set_tcen(C::raw(), true));
}
pub fn stop(&mut self) {
T::regs().mcr().modify(|w| w.set_tcen(C::raw(), false));
}
pub fn enable_burst_mode(&mut self) {
T::regs().tim(C::raw()).outr().modify(|w| {
// Enable Burst Mode
w.set_idlem(0, true);
w.set_idlem(1, true);
// Set output to active during the burst
w.set_idles(0, true);
w.set_idles(1, true);
})
}
pub fn disable_burst_mode(&mut self) {
T::regs().tim(C::raw()).outr().modify(|w| {
// Disable Burst Mode
w.set_idlem(0, false);
w.set_idlem(1, false);
})
}
fn update_primary_duty_or_dead_time(&mut self) {
self.min_secondary_duty = self.primary_duty + self.dead_time;
T::regs().tim(C::raw()).cmp(0).modify(|w| w.set_cmp(self.primary_duty));
T::regs()
.tim(C::raw())
.cmp(1)
.modify(|w| w.set_cmp(self.min_secondary_duty));
}
/// Set the dead time as a proportion of the maximum compare value
pub fn set_dead_time(&mut self, dead_time: u16) {
self.dead_time = dead_time;
self.max_secondary_duty = self.get_max_compare_value() - dead_time;
self.update_primary_duty_or_dead_time();
}
/// Get the maximum compare value of a duty cycle
pub fn get_max_compare_value(&mut self) -> u16 {
T::regs().tim(C::raw()).per().read().per()
}
/// The primary duty is the period in which the primary switch is active
///
/// In the case of a buck converter, this is the high-side switch
/// In the case of a boost converter, this is the low-side switch
pub fn set_primary_duty(&mut self, primary_duty: u16) {
self.primary_duty = primary_duty;
self.update_primary_duty_or_dead_time();
}
/// The secondary duty is the period in any switch is active
///
/// If less than or equal to the primary duty, the secondary switch will be active for one tick
/// If a fully complementary output is desired, the secondary duty can be set to the max compare
pub fn set_secondary_duty(&mut self, secondary_duty: u16) {
let secondary_duty = if secondary_duty > self.max_secondary_duty {
self.max_secondary_duty
} else if secondary_duty <= self.min_secondary_duty {
self.min_secondary_duty + 1
} else {
secondary_duty
};
T::regs().tim(C::raw()).cmp(2).modify(|w| w.set_cmp(secondary_duty));
}
}
/// Represents a variable-frequency resonant converter
///
/// This implementation of a resonsant converter is appropriate for a half or full bridge,
/// but does not include secondary rectification, which is appropriate for applications
/// with a low-voltage on the secondary side.
pub struct ResonantConverter<T: HighResolutionCaptureCompare16bitInstance, C: AdvancedChannel<T>> {
timer: PhantomData<T>,
channel: PhantomData<C>,
min_period: u16,
max_period: u16,
}
impl<T: HighResolutionCaptureCompare16bitInstance, C: AdvancedChannel<T>> ResonantConverter<T, C> {
pub fn new(_channel: C, min_frequency: Hertz, max_frequency: Hertz) -> Self {
T::set_channel_frequency(C::raw(), min_frequency);
// Always enable preload
T::regs().tim(C::raw()).cr().modify(|w| {
w.set_preen(true);
w.set_repu(true);
w.set_cont(true);
w.set_half(true);
});
// Enable timer outputs
T::regs().oenr().modify(|w| {
w.set_t1oen(C::raw(), true);
w.set_t2oen(C::raw(), true);
});
// Dead-time generator can be used in this case because the primary fets
// of a resonant converter are always complementary
T::regs().tim(C::raw()).outr().modify(|w| w.set_dten(true));
let max_period = T::regs().tim(C::raw()).per().read().per();
let min_period = max_period * (min_frequency.0 / max_frequency.0) as u16;
Self {
timer: PhantomData,
channel: PhantomData,
min_period: min_period,
max_period: max_period,
}
}
/// Set the dead time as a proportion of the maximum compare value
pub fn set_dead_time(&mut self, value: u16) {
T::set_channel_dead_time(C::raw(), value);
}
pub fn set_period(&mut self, period: u16) {
assert!(period < self.max_period);
assert!(period > self.min_period);
T::regs().tim(C::raw()).per().modify(|w| w.set_per(period));
}
/// Get the minimum compare value of a duty cycle
pub fn get_min_period(&mut self) -> u16 {
self.min_period
}
/// Get the maximum compare value of a duty cycle
pub fn get_max_period(&mut self) -> u16 {
self.max_period
}
}