embassy/embassy-nrf/src/timer.rs
2023-03-06 00:17:51 +01:00

309 lines
9.8 KiB
Rust

//! Timer driver.
//!
//! Important note! This driver is very low level. For most time-related use cases, like
//! "sleep for X seconds", "do something every X seconds", or measuring time, you should
//! use [`embassy-time`](https://crates.io/crates/embassy-time) instead!
#![macro_use]
use embassy_hal_common::{into_ref, PeripheralRef};
use crate::interrupt::Interrupt;
use crate::ppi::{Event, Task};
use crate::{pac, Peripheral};
pub(crate) mod sealed {
use super::*;
pub trait Instance {
/// The number of CC registers this instance has.
const CCS: usize;
fn regs() -> &'static pac::timer0::RegisterBlock;
}
pub trait ExtendedInstance {}
pub trait TimerType {}
}
/// Basic Timer instance.
pub trait Instance: Peripheral<P = Self> + sealed::Instance + 'static + Send {
/// Interrupt for this peripheral.
type Interrupt: Interrupt;
}
/// Extended timer instance.
pub trait ExtendedInstance: Instance + sealed::ExtendedInstance {}
macro_rules! impl_timer {
($type:ident, $pac_type:ident, $irq:ident, $ccs:literal) => {
impl crate::timer::sealed::Instance for peripherals::$type {
const CCS: usize = $ccs;
fn regs() -> &'static pac::timer0::RegisterBlock {
unsafe { &*(pac::$pac_type::ptr() as *const pac::timer0::RegisterBlock) }
}
}
impl crate::timer::Instance for peripherals::$type {
type Interrupt = crate::interrupt::$irq;
}
};
($type:ident, $pac_type:ident, $irq:ident) => {
impl_timer!($type, $pac_type, $irq, 4);
};
($type:ident, $pac_type:ident, $irq:ident, extended) => {
impl_timer!($type, $pac_type, $irq, 6);
impl crate::timer::sealed::ExtendedInstance for peripherals::$type {}
impl crate::timer::ExtendedInstance for peripherals::$type {}
};
}
/// Timer frequency
#[repr(u8)]
pub enum Frequency {
/// 16MHz
F16MHz = 0,
/// 8MHz
F8MHz = 1,
/// 4MHz
F4MHz = 2,
/// 2MHz
F2MHz = 3,
/// 1MHz
F1MHz = 4,
/// 500kHz
F500kHz = 5,
/// 250kHz
F250kHz = 6,
/// 125kHz
F125kHz = 7,
/// 62500Hz
F62500Hz = 8,
/// 31250Hz
F31250Hz = 9,
}
/// nRF Timer driver.
///
/// The timer has an internal counter, which is incremented for every tick of the timer.
/// The counter is 32-bit, so it wraps back to 0 when it reaches 2^32.
///
/// It has either 4 or 6 Capture/Compare registers, which can be used to capture the current state of the counter
/// or trigger an event when the counter reaches a certain value.
/// Timer driver.
pub struct Timer<'d, T: Instance> {
_p: PeripheralRef<'d, T>,
}
impl<'d, T: Instance> Timer<'d, T> {
/// Create a new `Timer` driver.
///
/// This can be useful for triggering tasks via PPI
/// `Uarte` uses this internally.
pub fn new(timer: impl Peripheral<P = T> + 'd) -> Self {
Self::new_inner(timer, false)
}
/// Create a new `Timer` driver in counter mode.
///
/// This can be useful for triggering tasks via PPI
/// `Uarte` uses this internally.
pub fn new_counter(timer: impl Peripheral<P = T> + 'd) -> Self {
Self::new_inner(timer, true)
}
fn new_inner(timer: impl Peripheral<P = T> + 'd, is_counter: bool) -> Self {
into_ref!(timer);
let regs = T::regs();
let mut this = Self { _p: timer };
// Stop the timer before doing anything else,
// since changing BITMODE while running can cause 'unpredictable behaviour' according to the specification.
this.stop();
if is_counter {
regs.mode.write(|w| w.mode().counter());
} else {
regs.mode.write(|w| w.mode().timer());
}
// Make the counter's max value as high as possible.
// TODO: is there a reason someone would want to set this lower?
regs.bitmode.write(|w| w.bitmode()._32bit());
// Initialize the counter at 0.
this.clear();
// Default to the max frequency of the lower power clock
this.set_frequency(Frequency::F1MHz);
for n in 0..T::CCS {
let cc = this.cc(n);
// Initialize all the shorts as disabled.
cc.unshort_compare_clear();
cc.unshort_compare_stop();
// Initialize the CC registers as 0.
cc.write(0);
}
this
}
/// Starts the timer.
pub fn start(&self) {
T::regs().tasks_start.write(|w| unsafe { w.bits(1) })
}
/// Stops the timer.
pub fn stop(&self) {
T::regs().tasks_stop.write(|w| unsafe { w.bits(1) })
}
/// Reset the timer's counter to 0.
pub fn clear(&self) {
T::regs().tasks_clear.write(|w| unsafe { w.bits(1) })
}
/// Returns the START task, for use with PPI.
///
/// When triggered, this task starts the timer.
pub fn task_start(&self) -> Task {
Task::from_reg(&T::regs().tasks_start)
}
/// Returns the STOP task, for use with PPI.
///
/// When triggered, this task stops the timer.
pub fn task_stop(&self) -> Task {
Task::from_reg(&T::regs().tasks_stop)
}
/// Returns the CLEAR task, for use with PPI.
///
/// When triggered, this task resets the timer's counter to 0.
pub fn task_clear(&self) -> Task {
Task::from_reg(&T::regs().tasks_clear)
}
/// Returns the COUNT task, for use with PPI.
///
/// When triggered, this task increments the timer's counter by 1.
/// Only works in counter mode.
pub fn task_count(&self) -> Task {
Task::from_reg(&T::regs().tasks_count)
}
/// Change the timer's frequency.
///
/// This will stop the timer if it isn't already stopped,
/// because the timer may exhibit 'unpredictable behaviour' if it's frequency is changed while it's running.
pub fn set_frequency(&self, frequency: Frequency) {
self.stop();
T::regs()
.prescaler
// SAFETY: `frequency` is a variant of `Frequency`,
// whose values are all in the range of 0-9 (the valid range of `prescaler`).
.write(|w| unsafe { w.prescaler().bits(frequency as u8) })
}
/// Returns this timer's `n`th CC register.
///
/// # Panics
/// Panics if `n` >= the number of CC registers this timer has (4 for a normal timer, 6 for an extended timer).
pub fn cc(&mut self, n: usize) -> Cc<T> {
if n >= T::CCS {
panic!("Cannot get CC register {} of timer with {} CC registers.", n, T::CCS);
}
Cc {
n,
_p: self._p.reborrow(),
}
}
}
/// A representation of a timer's Capture/Compare (CC) register.
///
/// A CC register holds a 32-bit value.
/// This is used either to store a capture of the timer's current count, or to specify the value for the timer to compare against.
///
/// The timer will fire the register's COMPARE event when its counter reaches the value stored in the register.
/// When the register's CAPTURE task is triggered, the timer will store the current value of its counter in the register
pub struct Cc<'d, T: Instance> {
n: usize,
_p: PeripheralRef<'d, T>,
}
impl<'d, T: Instance> Cc<'d, T> {
/// Get the current value stored in the register.
pub fn read(&self) -> u32 {
T::regs().cc[self.n].read().cc().bits()
}
/// Set the value stored in the register.
///
/// `event_compare` will fire when the timer's counter reaches this value.
pub fn write(&self, value: u32) {
// SAFETY: there are no invalid values for the CC register.
T::regs().cc[self.n].write(|w| unsafe { w.cc().bits(value) })
}
/// Capture the current value of the timer's counter in this register, and return it.
pub fn capture(&self) -> u32 {
T::regs().tasks_capture[self.n].write(|w| unsafe { w.bits(1) });
self.read()
}
/// Returns this CC register's CAPTURE task, for use with PPI.
///
/// When triggered, this task will capture the current value of the timer's counter in this register.
pub fn task_capture(&self) -> Task {
Task::from_reg(&T::regs().tasks_capture)
}
/// Returns this CC register's COMPARE event, for use with PPI.
///
/// This event will fire when the timer's counter reaches the value in this CC register.
pub fn event_compare(&self) -> Event {
Event::from_reg(&T::regs().events_compare[self.n])
}
/// Enable the shortcut between this CC register's COMPARE event and the timer's CLEAR task.
///
/// This means that when the COMPARE event is fired, the CLEAR task will be triggered.
///
/// So, when the timer's counter reaches the value stored in this register, the timer's counter will be reset to 0.
pub fn short_compare_clear(&self) {
T::regs()
.shorts
.modify(|r, w| unsafe { w.bits(r.bits() | (1 << self.n)) })
}
/// Disable the shortcut between this CC register's COMPARE event and the timer's CLEAR task.
pub fn unshort_compare_clear(&self) {
T::regs()
.shorts
.modify(|r, w| unsafe { w.bits(r.bits() & !(1 << self.n)) })
}
/// Enable the shortcut between this CC register's COMPARE event and the timer's STOP task.
///
/// This means that when the COMPARE event is fired, the STOP task will be triggered.
///
/// So, when the timer's counter reaches the value stored in this register, the timer will stop counting up.
pub fn short_compare_stop(&self) {
T::regs()
.shorts
.modify(|r, w| unsafe { w.bits(r.bits() | (1 << (8 + self.n))) })
}
/// Disable the shortcut between this CC register's COMPARE event and the timer's STOP task.
pub fn unshort_compare_stop(&self) {
T::regs()
.shorts
.modify(|r, w| unsafe { w.bits(r.bits() & !(1 << (8 + self.n))) })
}
}