embassy/embassy-stm32/src/spi/v3.rs
Tobias Pisani 259e84e68e Make miso/mosi optional when for unidirectional spi
Only suported on v1 currently
2021-10-11 22:57:21 +02:00

608 lines
18 KiB
Rust

#![macro_use]
use crate::dma::NoDma;
use crate::gpio::{AnyPin, Pin};
use crate::pac::gpio::vals::{Afr, Moder};
use crate::pac::gpio::Gpio;
use crate::pac::spi;
use crate::spi::{
ByteOrder, Config, Error, Instance, MisoPin, MosiPin, RxDmaChannel, SckPin, TxDmaChannel,
WordSize,
};
use crate::time::Hertz;
use core::future::Future;
use core::marker::PhantomData;
use core::ptr;
use embassy::util::Unborrow;
use embassy_hal_common::unborrow;
use embassy_traits::spi as traits;
pub use embedded_hal::spi::{Mode, Phase, Polarity, MODE_0, MODE_1, MODE_2, MODE_3};
use futures::future::join3;
impl WordSize {
fn dsize(&self) -> u8 {
match self {
WordSize::EightBit => 0b0111,
WordSize::SixteenBit => 0b1111,
}
}
fn _frxth(&self) -> spi::vals::Fthlv {
match self {
WordSize::EightBit => spi::vals::Fthlv::ONEFRAME,
WordSize::SixteenBit => spi::vals::Fthlv::ONEFRAME,
}
}
}
#[allow(unused)]
pub struct Spi<'d, T: Instance, Tx = NoDma, Rx = NoDma> {
sck: Option<AnyPin>,
mosi: Option<AnyPin>,
miso: Option<AnyPin>,
txdma: Tx,
rxdma: Rx,
phantom: PhantomData<&'d mut T>,
}
impl<'d, T: Instance, Tx, Rx> Spi<'d, T, Tx, Rx> {
pub fn new<F>(
_peri: impl Unborrow<Target = T> + 'd,
sck: impl Unborrow<Target = impl SckPin<T>>,
mosi: impl Unborrow<Target = impl MosiPin<T>>,
miso: impl Unborrow<Target = impl MisoPin<T>>,
txdma: impl Unborrow<Target = Tx>,
rxdma: impl Unborrow<Target = Rx>,
freq: F,
config: Config,
) -> Self
where
F: Into<Hertz>,
{
unborrow!(sck, mosi, miso, txdma, rxdma);
let sck_af = sck.af_num();
let mosi_af = mosi.af_num();
let miso_af = miso.af_num();
let sck = sck.degrade_optional();
let mosi = mosi.degrade_optional();
let miso = miso.degrade_optional();
unsafe {
sck.as_ref()
.map(|x| Self::configure_pin(x.block(), x.pin() as _, sck_af));
//sck.block().otyper().modify(|w| w.set_ot(Pin::pin(sck) as _, crate::pac::gpio::vals::Ot::PUSHPULL));
sck.as_ref()
.map(|x| Self::configure_pin(x.block(), x.pin() as _, mosi_af));
//mosi.block().otyper().modify(|w| w.set_ot(Pin::pin(mosi) as _, crate::pac::gpio::vals::Ot::PUSHPULL));
sck.as_ref()
.map(|x| Self::configure_pin(x.block(), x.pin() as _, miso_af));
}
let pclk = T::frequency();
let br = Self::compute_baud_rate(pclk, freq.into());
unsafe {
T::enable();
T::reset();
T::regs().ifcr().write(|w| w.0 = 0xffff_ffff);
T::regs().cfg2().modify(|w| {
//w.set_ssoe(true);
w.set_ssoe(false);
w.set_cpha(
match config.mode.phase == Phase::CaptureOnSecondTransition {
true => spi::vals::Cpha::SECONDEDGE,
false => spi::vals::Cpha::FIRSTEDGE,
},
);
w.set_cpol(match config.mode.polarity == Polarity::IdleHigh {
true => spi::vals::Cpol::IDLEHIGH,
false => spi::vals::Cpol::IDLELOW,
});
w.set_lsbfrst(match config.byte_order {
ByteOrder::LsbFirst => spi::vals::Lsbfrst::LSBFIRST,
ByteOrder::MsbFirst => spi::vals::Lsbfrst::MSBFIRST,
});
w.set_ssm(true);
w.set_master(spi::vals::Master::MASTER);
w.set_comm(spi::vals::Comm::FULLDUPLEX);
w.set_ssom(spi::vals::Ssom::ASSERTED);
w.set_midi(0);
w.set_mssi(0);
w.set_afcntr(spi::vals::Afcntr::CONTROLLED);
w.set_ssiop(spi::vals::Ssiop::ACTIVEHIGH);
});
T::regs().cfg1().modify(|w| {
w.set_crcen(false);
w.set_mbr(spi::vals::Mbr(br));
w.set_dsize(WordSize::EightBit.dsize());
});
T::regs().cr2().modify(|w| {
w.set_tsize(0);
w.set_tser(0);
});
T::regs().cr1().modify(|w| {
w.set_ssi(false);
w.set_spe(true);
});
}
Self {
sck,
mosi,
miso,
txdma,
rxdma,
phantom: PhantomData,
}
}
unsafe fn configure_pin(block: Gpio, pin: usize, af_num: u8) {
let (afr, n_af) = if pin < 8 { (0, pin) } else { (1, pin - 8) };
block.moder().modify(|w| w.set_moder(pin, Moder::ALTERNATE));
block.afr(afr).modify(|w| w.set_afr(n_af, Afr(af_num)));
block
.ospeedr()
.modify(|w| w.set_ospeedr(pin, crate::pac::gpio::vals::Ospeedr::VERYHIGHSPEED));
}
unsafe fn unconfigure_pin(block: Gpio, pin: usize) {
block.moder().modify(|w| w.set_moder(pin, Moder::ANALOG));
}
fn compute_baud_rate(clocks: Hertz, freq: Hertz) -> u8 {
match clocks.0 / freq.0 {
0 => unreachable!(),
1..=2 => 0b000,
3..=5 => 0b001,
6..=11 => 0b010,
12..=23 => 0b011,
24..=39 => 0b100,
40..=95 => 0b101,
96..=191 => 0b110,
_ => 0b111,
}
}
fn set_word_size(word_size: WordSize) {
unsafe {
T::regs().cr1().modify(|w| {
w.set_csusp(true);
});
while T::regs().sr().read().eot() {}
T::regs().cr1().modify(|w| {
w.set_spe(false);
});
T::regs().cfg1().modify(|w| {
w.set_dsize(word_size.dsize());
});
T::regs().cr1().modify(|w| {
w.set_csusp(false);
w.set_spe(true);
});
}
}
#[allow(unused)]
async fn write_dma_u8(&mut self, write: &[u8]) -> Result<(), Error>
where
Tx: TxDmaChannel<T>,
{
Self::set_word_size(WordSize::EightBit);
unsafe {
T::regs().cr1().modify(|w| {
w.set_spe(false);
});
}
let request = self.txdma.request();
let dst = T::regs().txdr().ptr() as *mut u8;
let f = self.txdma.write(request, write, dst);
unsafe {
T::regs().cfg1().modify(|reg| {
reg.set_txdmaen(true);
});
T::regs().cr1().modify(|w| {
w.set_spe(true);
});
T::regs().cr1().modify(|w| {
w.set_cstart(true);
});
}
f.await;
unsafe {
T::regs().cfg1().modify(|reg| {
reg.set_txdmaen(false);
});
T::regs().cr1().modify(|w| {
w.set_spe(false);
});
}
Ok(())
}
#[allow(unused)]
async fn read_dma_u8(&mut self, read: &mut [u8]) -> Result<(), Error>
where
Tx: TxDmaChannel<T>,
Rx: RxDmaChannel<T>,
{
Self::set_word_size(WordSize::EightBit);
unsafe {
T::regs().cr1().modify(|w| {
w.set_spe(false);
});
T::regs().cfg1().modify(|reg| {
reg.set_rxdmaen(true);
});
}
let clock_byte_count = read.len();
let rx_request = self.rxdma.request();
let rx_src = T::regs().rxdr().ptr() as *mut u8;
let rx_f = self.rxdma.read(rx_request, rx_src, read);
let tx_request = self.txdma.request();
let tx_dst = T::regs().txdr().ptr() as *mut u8;
let clock_byte = 0x00;
let tx_f = self
.txdma
.write_x(tx_request, &clock_byte, clock_byte_count, tx_dst);
unsafe {
T::regs().cfg1().modify(|reg| {
reg.set_txdmaen(true);
});
T::regs().cr1().modify(|w| {
w.set_spe(true);
});
T::regs().cr1().modify(|w| {
w.set_cstart(true);
});
}
join3(tx_f, rx_f, Self::wait_for_idle()).await;
unsafe {
T::regs().cfg1().modify(|reg| {
reg.set_rxdmaen(false);
reg.set_txdmaen(false);
});
T::regs().cr1().modify(|w| {
w.set_spe(false);
});
}
Ok(())
}
#[allow(unused)]
async fn read_write_dma_u8(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Error>
where
Tx: TxDmaChannel<T>,
Rx: RxDmaChannel<T>,
{
assert!(read.len() >= write.len());
Self::set_word_size(WordSize::EightBit);
unsafe {
T::regs().cr1().modify(|w| {
w.set_spe(false);
});
T::regs().cfg1().modify(|reg| {
reg.set_rxdmaen(true);
});
}
let rx_request = self.rxdma.request();
let rx_src = T::regs().rxdr().ptr() as *mut u8;
let rx_f = self
.rxdma
.read(rx_request, rx_src, &mut read[0..write.len()]);
let tx_request = self.txdma.request();
let tx_dst = T::regs().txdr().ptr() as *mut u8;
let tx_f = self.txdma.write(tx_request, write, tx_dst);
unsafe {
T::regs().cfg1().modify(|reg| {
reg.set_txdmaen(true);
});
T::regs().cr1().modify(|w| {
w.set_spe(true);
});
T::regs().cr1().modify(|w| {
w.set_cstart(true);
});
}
join3(tx_f, rx_f, Self::wait_for_idle()).await;
unsafe {
T::regs().cfg1().modify(|reg| {
reg.set_rxdmaen(false);
reg.set_txdmaen(false);
});
T::regs().cr1().modify(|w| {
w.set_spe(false);
});
}
Ok(())
}
async fn wait_for_idle() {
unsafe {
while !T::regs().sr().read().txc() {
// spin
}
while T::regs().sr().read().rxplvl().0 > 0 {
// spin
}
}
}
}
impl<'d, T: Instance, Tx, Rx> Drop for Spi<'d, T, Tx, Rx> {
fn drop(&mut self) {
unsafe {
self.sck
.as_ref()
.map(|x| Self::unconfigure_pin(x.block(), x.pin() as _));
self.mosi
.as_ref()
.map(|x| Self::unconfigure_pin(x.block(), x.pin() as _));
self.miso
.as_ref()
.map(|x| Self::unconfigure_pin(x.block(), x.pin() as _));
}
}
}
impl<'d, T: Instance> embedded_hal::blocking::spi::Write<u8> for Spi<'d, T, NoDma> {
type Error = Error;
fn write(&mut self, words: &[u8]) -> Result<(), Self::Error> {
Self::set_word_size(WordSize::EightBit);
let regs = T::regs();
for word in words.iter() {
while unsafe { !regs.sr().read().txp() } {
// spin
}
unsafe {
let txdr = regs.txdr().ptr() as *mut u8;
ptr::write_volatile(txdr, *word);
regs.cr1().modify(|reg| reg.set_cstart(true));
}
loop {
let sr = unsafe { regs.sr().read() };
if sr.tifre() {
return Err(Error::Framing);
}
if sr.ovr() {
return Err(Error::Overrun);
}
if sr.crce() {
return Err(Error::Crc);
}
if !sr.txp() {
// loop waiting for TXE
continue;
}
break;
}
unsafe {
let rxdr = regs.rxdr().ptr() as *const u8;
// discard read to prevent pverrun.
let _ = ptr::read_volatile(rxdr);
}
}
while unsafe { !regs.sr().read().txc() } {
// spin
}
Ok(())
}
}
impl<'d, T: Instance> embedded_hal::blocking::spi::Transfer<u8> for Spi<'d, T, NoDma> {
type Error = Error;
fn transfer<'w>(&mut self, words: &'w mut [u8]) -> Result<&'w [u8], Self::Error> {
Self::set_word_size(WordSize::EightBit);
let regs = T::regs();
for word in words.iter_mut() {
unsafe {
regs.cr1().modify(|reg| {
reg.set_ssi(false);
});
}
while unsafe { !regs.sr().read().txp() } {
// spin
}
unsafe {
let txdr = regs.txdr().ptr() as *mut u8;
ptr::write_volatile(txdr, *word);
regs.cr1().modify(|reg| reg.set_cstart(true));
}
loop {
let sr = unsafe { regs.sr().read() };
if sr.rxp() {
break;
}
if sr.tifre() {
return Err(Error::Framing);
}
if sr.ovr() {
return Err(Error::Overrun);
}
if sr.crce() {
return Err(Error::Crc);
}
}
unsafe {
let rxdr = regs.rxdr().ptr() as *const u8;
*word = ptr::read_volatile(rxdr);
}
let sr = unsafe { regs.sr().read() };
if sr.tifre() {
return Err(Error::Framing);
}
if sr.ovr() {
return Err(Error::Overrun);
}
if sr.crce() {
return Err(Error::Crc);
}
}
Ok(words)
}
}
impl<'d, T: Instance> embedded_hal::blocking::spi::Write<u16> for Spi<'d, T, NoDma> {
type Error = Error;
fn write(&mut self, words: &[u16]) -> Result<(), Self::Error> {
Self::set_word_size(WordSize::SixteenBit);
let regs = T::regs();
for word in words.iter() {
while unsafe { !regs.sr().read().txp() } {
// spin
}
unsafe {
let txdr = regs.txdr().ptr() as *mut u16;
ptr::write_volatile(txdr, *word);
regs.cr1().modify(|reg| reg.set_cstart(true));
}
loop {
let sr = unsafe { regs.sr().read() };
if sr.tifre() {
return Err(Error::Framing);
}
if sr.ovr() {
return Err(Error::Overrun);
}
if sr.crce() {
return Err(Error::Crc);
}
if !sr.txp() {
// loop waiting for TXE
continue;
}
break;
}
unsafe {
let rxdr = regs.rxdr().ptr() as *const u8;
// discard read to prevent pverrun.
let _ = ptr::read_volatile(rxdr);
}
}
while unsafe { !regs.sr().read().txc() } {
// spin
}
Ok(())
}
}
impl<'d, T: Instance> embedded_hal::blocking::spi::Transfer<u16> for Spi<'d, T, NoDma> {
type Error = Error;
fn transfer<'w>(&mut self, words: &'w mut [u16]) -> Result<&'w [u16], Self::Error> {
Self::set_word_size(WordSize::SixteenBit);
let regs = T::regs();
for word in words.iter_mut() {
while unsafe { !regs.sr().read().txp() } {
// spin
}
unsafe {
let txdr = regs.txdr().ptr() as *mut u16;
ptr::write_volatile(txdr, *word);
regs.cr1().modify(|reg| reg.set_cstart(true));
}
loop {
let sr = unsafe { regs.sr().read() };
if sr.rxp() {
break;
}
if sr.tifre() {
return Err(Error::Framing);
}
if sr.ovr() {
return Err(Error::Overrun);
}
if sr.crce() {
return Err(Error::Crc);
}
}
unsafe {
let rxdr = regs.rxdr().ptr() as *const u16;
*word = ptr::read_volatile(rxdr);
}
let sr = unsafe { regs.sr().read() };
if sr.tifre() {
return Err(Error::Framing);
}
if sr.ovr() {
return Err(Error::Overrun);
}
if sr.crce() {
return Err(Error::Crc);
}
}
Ok(words)
}
}
impl<'d, T: Instance, Tx, Rx> traits::Spi<u8> for Spi<'d, T, Tx, Rx> {
type Error = super::Error;
}
impl<'d, T: Instance, Tx: TxDmaChannel<T>, Rx> traits::Write<u8> for Spi<'d, T, Tx, Rx> {
#[rustfmt::skip]
type WriteFuture<'a> where Self: 'a = impl Future<Output = Result<(), Self::Error>> + 'a;
fn write<'a>(&'a mut self, data: &'a [u8]) -> Self::WriteFuture<'a> {
self.write_dma_u8(data)
}
}
impl<'d, T: Instance, Tx: TxDmaChannel<T>, Rx: RxDmaChannel<T>> traits::Read<u8>
for Spi<'d, T, Tx, Rx>
{
#[rustfmt::skip]
type ReadFuture<'a> where Self: 'a = impl Future<Output = Result<(), Self::Error>> + 'a;
fn read<'a>(&'a mut self, data: &'a mut [u8]) -> Self::ReadFuture<'a> {
self.read_dma_u8(data)
}
}
impl<'d, T: Instance, Tx: TxDmaChannel<T>, Rx: RxDmaChannel<T>> traits::FullDuplex<u8>
for Spi<'d, T, Tx, Rx>
{
#[rustfmt::skip]
type WriteReadFuture<'a> where Self: 'a = impl Future<Output = Result<(), Self::Error>> + 'a;
fn read_write<'a>(
&'a mut self,
read: &'a mut [u8],
write: &'a [u8],
) -> Self::WriteReadFuture<'a> {
self.read_write_dma_u8(read, write)
}
}