embassy/embassy-stm32/src/rcc/f4.rs
2022-02-14 02:12:06 +01:00

289 lines
8.0 KiB
Rust

use super::sealed::RccPeripheral;
use crate::pac::rcc::vals::{Hpre, Ppre, Sw};
use crate::pac::{FLASH, PWR, RCC};
use crate::rcc::{set_freqs, Clocks};
use crate::time::Hertz;
const HSI: u32 = 16_000_000;
/// Clocks configuration
#[non_exhaustive]
#[derive(Default)]
pub struct Config {
pub hse: Option<Hertz>,
pub bypass_hse: bool,
pub hclk: Option<Hertz>,
pub sys_ck: Option<Hertz>,
pub pclk1: Option<Hertz>,
pub pclk2: Option<Hertz>,
pub pll48: bool,
}
unsafe fn setup_pll(
pllsrcclk: u32,
use_hse: bool,
pllsysclk: Option<u32>,
pll48clk: bool,
) -> PllResults {
use crate::pac::rcc::vals::{Pllp, Pllsrc};
let sysclk = pllsysclk.unwrap_or(pllsrcclk);
if pllsysclk.is_none() && !pll48clk {
RCC.pllcfgr()
.modify(|w| w.set_pllsrc(Pllsrc(use_hse as u8)));
return PllResults {
use_pll: false,
pllsysclk: None,
pll48clk: None,
};
}
// Input divisor from PLL source clock, must result to frequency in
// the range from 1 to 2 MHz
let pllm_min = (pllsrcclk + 1_999_999) / 2_000_000;
let pllm_max = pllsrcclk / 1_000_000;
// Sysclk output divisor must be one of 2, 4, 6 or 8
let sysclk_div = core::cmp::min(8, (432_000_000 / sysclk) & !1);
let target_freq = if pll48clk {
48_000_000
} else {
sysclk * sysclk_div
};
// Find the lowest pllm value that minimize the difference between
// target frequency and the real vco_out frequency.
let pllm = unwrap!((pllm_min..=pllm_max).min_by_key(|pllm| {
let vco_in = pllsrcclk / pllm;
let plln = target_freq / vco_in;
target_freq - vco_in * plln
}));
let vco_in = pllsrcclk / pllm;
assert!((1_000_000..=2_000_000).contains(&vco_in));
// Main scaler, must result in >= 100MHz (>= 192MHz for F401)
// and <= 432MHz, min 50, max 432
let plln = if pll48clk {
// try the different valid pllq according to the valid
// main scaller values, and take the best
let pllq = unwrap!((4..=9).min_by_key(|pllq| {
let plln = 48_000_000 * pllq / vco_in;
let pll48_diff = 48_000_000 - vco_in * plln / pllq;
let sysclk_diff = (sysclk as i32 - (vco_in * plln / sysclk_div) as i32).abs();
(pll48_diff, sysclk_diff)
}));
48_000_000 * pllq / vco_in
} else {
sysclk * sysclk_div / vco_in
};
let pllp = (sysclk_div / 2) - 1;
let pllq = (vco_in * plln + 47_999_999) / 48_000_000;
let real_pll48clk = vco_in * plln / pllq;
RCC.pllcfgr().modify(|w| {
w.set_pllm(pllm as u8);
w.set_plln(plln as u16);
w.set_pllp(Pllp(pllp as u8));
w.set_pllq(pllq as u8);
w.set_pllsrc(Pllsrc(use_hse as u8));
});
let real_pllsysclk = vco_in * plln / sysclk_div;
PllResults {
use_pll: true,
pllsysclk: Some(real_pllsysclk),
pll48clk: if pll48clk { Some(real_pll48clk) } else { None },
}
}
unsafe fn flash_setup(sysclk: u32) {
use crate::pac::flash::vals::Latency;
// Be conservative with voltage ranges
const FLASH_LATENCY_STEP: u32 = 30_000_000;
critical_section::with(|_| {
FLASH
.acr()
.modify(|w| w.set_latency(Latency(((sysclk - 1) / FLASH_LATENCY_STEP) as u8)));
});
}
pub(crate) unsafe fn init(config: Config) {
crate::peripherals::PWR::enable();
let pllsrcclk = config.hse.map(|hse| hse.0).unwrap_or(HSI);
let sysclk = config.sys_ck.map(|sys| sys.0).unwrap_or(pllsrcclk);
let sysclk_on_pll = sysclk != pllsrcclk;
let plls = setup_pll(
pllsrcclk,
config.hse.is_some(),
if sysclk_on_pll { Some(sysclk) } else { None },
config.pll48,
);
if config.pll48 {
let freq = unwrap!(plls.pll48clk);
assert!((max::PLL_48_CLK as i32 - freq as i32).abs() <= max::PLL_48_TOLERANCE as i32);
}
let sysclk = if sysclk_on_pll {
unwrap!(plls.pllsysclk)
} else {
sysclk
};
// AHB prescaler
let hclk = config.hclk.map(|h| h.0).unwrap_or(sysclk);
let (hpre_bits, hpre_div) = match (sysclk + hclk - 1) / hclk {
0 => unreachable!(),
1 => (Hpre::DIV1, 1),
2 => (Hpre::DIV2, 2),
3..=5 => (Hpre::DIV4, 4),
6..=11 => (Hpre::DIV8, 8),
12..=39 => (Hpre::DIV16, 16),
40..=95 => (Hpre::DIV64, 64),
96..=191 => (Hpre::DIV128, 128),
192..=383 => (Hpre::DIV256, 256),
_ => (Hpre::DIV512, 512),
};
// Calculate real AHB clock
let hclk = sysclk / hpre_div;
let pclk1 = config
.pclk1
.map(|p| p.0)
.unwrap_or_else(|| core::cmp::min(max::PCLK1_MAX, hclk));
let (ppre1_bits, ppre1) = match (hclk + pclk1 - 1) / pclk1 {
0 => unreachable!(),
1 => (0b000, 1),
2 => (0b100, 2),
3..=5 => (0b101, 4),
6..=11 => (0b110, 8),
_ => (0b111, 16),
};
let timer_mul1 = if ppre1 == 1 { 1 } else { 2 };
// Calculate real APB1 clock
let pclk1 = hclk / ppre1;
assert!(pclk1 <= max::PCLK1_MAX);
let pclk2 = config
.pclk2
.map(|p| p.0)
.unwrap_or_else(|| core::cmp::min(max::PCLK2_MAX, hclk));
let (ppre2_bits, ppre2) = match (hclk + pclk2 - 1) / pclk2 {
0 => unreachable!(),
1 => (0b000, 1),
2 => (0b100, 2),
3..=5 => (0b101, 4),
6..=11 => (0b110, 8),
_ => (0b111, 16),
};
let timer_mul2 = if ppre2 == 1 { 1 } else { 2 };
// Calculate real APB2 clock
let pclk2 = hclk / ppre2;
assert!(pclk2 <= max::PCLK2_MAX);
flash_setup(sysclk);
if config.hse.is_some() {
RCC.cr().modify(|w| {
w.set_hsebyp(config.bypass_hse);
w.set_hseon(true);
});
while !RCC.cr().read().hserdy() {}
}
if plls.use_pll {
RCC.cr().modify(|w| w.set_pllon(true));
if hclk > max::HCLK_OVERDRIVE_FREQUENCY {
PWR.cr1().modify(|w| w.set_oden(true));
while !PWR.csr1().read().odrdy() {}
PWR.cr1().modify(|w| w.set_odswen(true));
while !PWR.csr1().read().odswrdy() {}
}
while !RCC.cr().read().pllrdy() {}
}
RCC.cfgr().modify(|w| {
w.set_ppre2(Ppre(ppre2_bits));
w.set_ppre1(Ppre(ppre1_bits));
w.set_hpre(hpre_bits);
});
// Wait for the new prescalers to kick in
// "The clocks are divided with the new prescaler factor from 1 to 16 AHB cycles after write"
cortex_m::asm::delay(16);
RCC.cfgr().modify(|w| {
w.set_sw(if sysclk_on_pll {
Sw::PLL
} else if config.hse.is_some() {
Sw::HSE
} else {
Sw::HSI
})
});
set_freqs(Clocks {
sys: Hertz(sysclk),
apb1: Hertz(pclk1),
apb2: Hertz(pclk2),
apb1_tim: Hertz(pclk1 * timer_mul1),
apb2_tim: Hertz(pclk2 * timer_mul2),
ahb1: Hertz(hclk),
ahb2: Hertz(hclk),
ahb3: Hertz(hclk),
pll48: plls.pll48clk.map(Hertz),
});
}
struct PllResults {
use_pll: bool,
pllsysclk: Option<u32>,
pll48clk: Option<u32>,
}
mod max {
#[cfg(stm32f401)]
pub(crate) const SYSCLK_MAX: u32 = 84_000_000;
#[cfg(any(stm32f405, stm32f407, stm32f415, stm32f417,))]
pub(crate) const SYSCLK_MAX: u32 = 168_000_000;
#[cfg(any(stm32f410, stm32f411, stm32f412, stm32f413, stm32f423,))]
pub(crate) const SYSCLK_MAX: u32 = 100_000_000;
#[cfg(any(
stm32f427, stm32f429, stm32f437, stm32f439, stm32f446, stm32f469, stm32f479,
))]
pub(crate) const SYSCLK_MAX: u32 = 180_000_000;
pub(crate) const HCLK_OVERDRIVE_FREQUENCY: u32 = 168_000_000;
pub(crate) const PCLK1_MAX: u32 = PCLK2_MAX / 2;
#[cfg(any(stm32f401, stm32f410, stm32f411, stm32f412, stm32f413, stm32f423,))]
pub(crate) const PCLK2_MAX: u32 = SYSCLK_MAX;
#[cfg(not(any(stm32f401, stm32f410, stm32f411, stm32f412, stm32f413, stm32f423,)))]
pub(crate) const PCLK2_MAX: u32 = SYSCLK_MAX / 2;
pub(crate) const PLL_48_CLK: u32 = 48_000_000;
pub(crate) const PLL_48_TOLERANCE: u32 = 120_000;
}