525 lines
18 KiB
Rust
525 lines
18 KiB
Rust
use core::marker::PhantomData;
|
|
|
|
use embassy::util::Unborrow;
|
|
|
|
use crate::fmt::{assert, panic};
|
|
use crate::pac::peripherals;
|
|
use crate::pac::rcc::vals::Timpre;
|
|
use crate::pac::{RCC, SYSCFG};
|
|
use crate::pwr::{Power, VoltageScale};
|
|
use crate::time::Hertz;
|
|
|
|
mod pll;
|
|
use pll::pll_setup;
|
|
pub use pll::PllConfig;
|
|
|
|
const HSI: Hertz = Hertz(64_000_000);
|
|
const CSI: Hertz = Hertz(4_000_000);
|
|
const HSI48: Hertz = Hertz(48_000_000);
|
|
const LSI: Hertz = Hertz(32_000);
|
|
|
|
/// Core clock frequencies
|
|
#[derive(Clone, Copy)]
|
|
pub struct CoreClocks {
|
|
pub hclk: Hertz,
|
|
pub pclk1: Hertz,
|
|
pub pclk2: Hertz,
|
|
pub pclk3: Hertz,
|
|
pub pclk4: Hertz,
|
|
pub ppre1: u8,
|
|
pub ppre2: u8,
|
|
pub ppre3: u8,
|
|
pub ppre4: u8,
|
|
pub csi_ck: Option<Hertz>,
|
|
pub hsi_ck: Option<Hertz>,
|
|
pub hsi48_ck: Option<Hertz>,
|
|
pub lsi_ck: Option<Hertz>,
|
|
pub per_ck: Option<Hertz>,
|
|
pub hse_ck: Option<Hertz>,
|
|
pub pll1_p_ck: Option<Hertz>,
|
|
pub pll1_q_ck: Option<Hertz>,
|
|
pub pll1_r_ck: Option<Hertz>,
|
|
pub pll2_p_ck: Option<Hertz>,
|
|
pub pll2_q_ck: Option<Hertz>,
|
|
pub pll2_r_ck: Option<Hertz>,
|
|
pub pll3_p_ck: Option<Hertz>,
|
|
pub pll3_q_ck: Option<Hertz>,
|
|
pub pll3_r_ck: Option<Hertz>,
|
|
pub timx_ker_ck: Option<Hertz>,
|
|
pub timy_ker_ck: Option<Hertz>,
|
|
pub sys_ck: Hertz,
|
|
pub c_ck: Hertz,
|
|
}
|
|
|
|
/// Configuration of the core clocks
|
|
#[non_exhaustive]
|
|
#[derive(Default)]
|
|
pub struct Config {
|
|
pub hse: Option<Hertz>,
|
|
pub bypass_hse: bool,
|
|
pub sys_ck: Option<Hertz>,
|
|
pub per_ck: Option<Hertz>,
|
|
rcc_hclk: Option<Hertz>,
|
|
pub hclk: Option<Hertz>,
|
|
pub pclk1: Option<Hertz>,
|
|
pub pclk2: Option<Hertz>,
|
|
pub pclk3: Option<Hertz>,
|
|
pub pclk4: Option<Hertz>,
|
|
pub pll1: PllConfig,
|
|
pub pll2: PllConfig,
|
|
pub pll3: PllConfig,
|
|
}
|
|
|
|
pub struct Rcc<'d> {
|
|
inner: PhantomData<&'d ()>,
|
|
config: Config,
|
|
}
|
|
|
|
impl<'d> Rcc<'d> {
|
|
pub fn new(_rcc: impl Unborrow<Target = peripherals::RCC> + 'd, config: Config) -> Self {
|
|
Self {
|
|
inner: PhantomData,
|
|
config,
|
|
}
|
|
}
|
|
|
|
// TODO: FLASH and PWR
|
|
/// Freeze the core clocks, returning a Core Clocks Distribution
|
|
/// and Reset (CCDR) structure. The actual frequency of the clocks
|
|
/// configured is returned in the `clocks` member of the CCDR
|
|
/// structure.
|
|
///
|
|
/// Note that `freeze` will never result in a clock _faster_ than
|
|
/// that specified. It may result in a clock that is a factor of [1,
|
|
/// 2) slower.
|
|
///
|
|
/// `syscfg` is required to enable the I/O compensation cell.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// If a clock specification cannot be achieved within the
|
|
/// hardware specification then this function will panic. This
|
|
/// function may also panic if a clock specification can be
|
|
/// achieved, but the mechanism for doing so is not yet
|
|
/// implemented here.
|
|
pub fn freeze(mut self, pwr: &Power) -> CoreClocks {
|
|
use crate::pac::rcc::vals::{
|
|
Apb4enrSyscfgen, Ckpersel, D1ppre, D2ppre1, D3ppre, Hpre, Hsebyp, Hsidiv, Hsion, Lsion,
|
|
Pllsrc, Sw,
|
|
};
|
|
|
|
let srcclk = self.config.hse.unwrap_or(HSI); // Available clocks
|
|
let (sys_ck, sys_use_pll1_p) = self.sys_ck_setup(srcclk);
|
|
|
|
// Configure traceclk from PLL if needed
|
|
self.traceclk_setup(sys_use_pll1_p);
|
|
|
|
// NOTE(unsafe) We have exclusive access to the RCC
|
|
let (pll1_p_ck, pll1_q_ck, pll1_r_ck) =
|
|
unsafe { pll_setup(srcclk.0, &self.config.pll1, 0) };
|
|
let (pll2_p_ck, pll2_q_ck, pll2_r_ck) =
|
|
unsafe { pll_setup(srcclk.0, &self.config.pll2, 1) };
|
|
let (pll3_p_ck, pll3_q_ck, pll3_r_ck) =
|
|
unsafe { pll_setup(srcclk.0, &self.config.pll3, 2) };
|
|
|
|
let sys_ck = if sys_use_pll1_p {
|
|
Hertz(pll1_p_ck.unwrap()) // Must have been set by sys_ck_setup
|
|
} else {
|
|
sys_ck
|
|
};
|
|
|
|
// NOTE(unsafe) We own the regblock
|
|
unsafe {
|
|
// This routine does not support HSIDIV != 1. To
|
|
// do so it would need to ensure all PLLxON bits are clear
|
|
// before changing the value of HSIDIV
|
|
let cr = RCC.cr().read();
|
|
assert!(cr.hsion() == Hsion::ON);
|
|
assert!(cr.hsidiv() == Hsidiv::DIV1);
|
|
|
|
RCC.csr().modify(|w| w.set_lsion(Lsion::ON));
|
|
while !RCC.csr().read().lsirdy() {}
|
|
}
|
|
|
|
// per_ck from HSI by default
|
|
let (per_ck, ckpersel) = match (self.config.per_ck == self.config.hse, self.config.per_ck) {
|
|
(true, Some(hse)) => (hse, Ckpersel::HSE), // HSE
|
|
(_, Some(CSI)) => (CSI, Ckpersel::CSI), // CSI
|
|
_ => (HSI, Ckpersel::HSI), // HSI
|
|
};
|
|
|
|
// D1 Core Prescaler
|
|
// Set to 1
|
|
let d1cpre_bits = 0;
|
|
let d1cpre_div = 1;
|
|
let sys_d1cpre_ck = sys_ck.0 / d1cpre_div;
|
|
|
|
// Refer to part datasheet "General operating conditions"
|
|
// table for (rev V). We do not assert checks for earlier
|
|
// revisions which may have lower limits.
|
|
let (sys_d1cpre_ck_max, rcc_hclk_max, pclk_max) = match pwr.vos {
|
|
VoltageScale::Scale0 => (480_000_000, 240_000_000, 120_000_000),
|
|
VoltageScale::Scale1 => (400_000_000, 200_000_000, 100_000_000),
|
|
VoltageScale::Scale2 => (300_000_000, 150_000_000, 75_000_000),
|
|
_ => (200_000_000, 100_000_000, 50_000_000),
|
|
};
|
|
assert!(sys_d1cpre_ck <= sys_d1cpre_ck_max);
|
|
|
|
let rcc_hclk = self
|
|
.config
|
|
.rcc_hclk
|
|
.map(|v| v.0)
|
|
.unwrap_or(sys_d1cpre_ck / 2);
|
|
assert!(rcc_hclk <= rcc_hclk_max);
|
|
|
|
// Estimate divisor
|
|
let (hpre_bits, hpre_div) = match (sys_d1cpre_ck + rcc_hclk - 1) / rcc_hclk {
|
|
0 => panic!(),
|
|
1 => (Hpre::DIV1, 1),
|
|
2 => (Hpre::DIV2, 2),
|
|
3..=5 => (Hpre::DIV4, 4),
|
|
6..=11 => (Hpre::DIV8, 8),
|
|
12..=39 => (Hpre::DIV16, 16),
|
|
40..=95 => (Hpre::DIV64, 64),
|
|
96..=191 => (Hpre::DIV128, 128),
|
|
192..=383 => (Hpre::DIV256, 256),
|
|
_ => (Hpre::DIV512, 512),
|
|
};
|
|
// Calculate real AXI and AHB clock
|
|
let rcc_hclk = sys_d1cpre_ck / hpre_div;
|
|
assert!(rcc_hclk <= rcc_hclk_max);
|
|
let rcc_aclk = rcc_hclk; // AXI clock is always equal to AHB clock on H7
|
|
// Timer prescaler selection
|
|
let timpre = Timpre::DEFAULTX2;
|
|
|
|
let requested_pclk1 = self
|
|
.config
|
|
.pclk1
|
|
.map(|v| v.0)
|
|
.unwrap_or_else(|| pclk_max.min(rcc_hclk / 2));
|
|
let (rcc_pclk1, ppre1_bits, ppre1, rcc_timerx_ker_ck) =
|
|
Self::ppre_calculate(requested_pclk1, rcc_hclk, pclk_max, Some(timpre));
|
|
|
|
let requested_pclk2 = self
|
|
.config
|
|
.pclk2
|
|
.map(|v| v.0)
|
|
.unwrap_or_else(|| pclk_max.min(rcc_hclk / 2));
|
|
let (rcc_pclk2, ppre2_bits, ppre2, rcc_timery_ker_ck) =
|
|
Self::ppre_calculate(requested_pclk2, rcc_hclk, pclk_max, Some(timpre));
|
|
|
|
let requested_pclk3 = self
|
|
.config
|
|
.pclk3
|
|
.map(|v| v.0)
|
|
.unwrap_or_else(|| pclk_max.min(rcc_hclk / 2));
|
|
let (rcc_pclk3, ppre3_bits, ppre3, _) =
|
|
Self::ppre_calculate(requested_pclk3, rcc_hclk, pclk_max, None);
|
|
|
|
let requested_pclk4 = self
|
|
.config
|
|
.pclk4
|
|
.map(|v| v.0)
|
|
.unwrap_or_else(|| pclk_max.min(rcc_hclk / 2));
|
|
let (rcc_pclk4, ppre4_bits, ppre4, _) =
|
|
Self::ppre_calculate(requested_pclk4, rcc_hclk, pclk_max, None);
|
|
|
|
Self::flash_setup(rcc_aclk, pwr.vos);
|
|
|
|
// Start switching clocks -------------------
|
|
// NOTE(unsafe) We have the RCC singleton
|
|
unsafe {
|
|
// Ensure CSI is on and stable
|
|
RCC.cr().modify(|w| w.set_csion(Hsion::ON));
|
|
while !RCC.cr().read().csirdy() {}
|
|
|
|
// Ensure HSI48 is on and stable
|
|
RCC.cr().modify(|w| w.set_hsi48on(Hsion::ON));
|
|
while RCC.cr().read().hsi48on() == Hsion::OFF {}
|
|
|
|
// XXX: support MCO ?
|
|
|
|
let hse_ck = match self.config.hse {
|
|
Some(hse) => {
|
|
// Ensure HSE is on and stable
|
|
RCC.cr().modify(|w| {
|
|
w.set_hseon(Hsion::ON);
|
|
w.set_hsebyp(if self.config.bypass_hse {
|
|
Hsebyp::BYPASSED
|
|
} else {
|
|
Hsebyp::NOTBYPASSED
|
|
});
|
|
});
|
|
while !RCC.cr().read().hserdy() {}
|
|
Some(hse)
|
|
}
|
|
None => None,
|
|
};
|
|
|
|
let pllsrc = if self.config.hse.is_some() {
|
|
Pllsrc::HSE
|
|
} else {
|
|
Pllsrc::HSI
|
|
};
|
|
RCC.pllckselr().modify(|w| w.set_pllsrc(pllsrc));
|
|
|
|
if pll1_p_ck.is_some() {
|
|
RCC.cr().modify(|w| w.set_pll1on(Hsion::ON));
|
|
while !RCC.cr().read().pll1rdy() {}
|
|
}
|
|
|
|
if pll2_p_ck.is_some() {
|
|
RCC.cr().modify(|w| w.set_pll2on(Hsion::ON));
|
|
while !RCC.cr().read().pll2rdy() {}
|
|
}
|
|
|
|
if pll3_p_ck.is_some() {
|
|
RCC.cr().modify(|w| w.set_pll3on(Hsion::ON));
|
|
while !RCC.cr().read().pll3rdy() {}
|
|
}
|
|
|
|
// Core Prescaler / AHB Prescaler / APB3 Prescaler
|
|
RCC.d1cfgr().modify(|w| {
|
|
w.set_d1cpre(Hpre(d1cpre_bits));
|
|
w.set_d1ppre(D1ppre(ppre3_bits));
|
|
w.set_hpre(hpre_bits)
|
|
});
|
|
// Ensure core prescaler value is valid before future lower
|
|
// core voltage
|
|
while RCC.d1cfgr().read().d1cpre().0 != d1cpre_bits {}
|
|
|
|
// APB1 / APB2 Prescaler
|
|
RCC.d2cfgr().modify(|w| {
|
|
w.set_d2ppre1(D2ppre1(ppre1_bits));
|
|
w.set_d2ppre2(D2ppre1(ppre2_bits));
|
|
});
|
|
|
|
// APB4 Prescaler
|
|
RCC.d3cfgr().modify(|w| w.set_d3ppre(D3ppre(ppre4_bits)));
|
|
|
|
// Peripheral Clock (per_ck)
|
|
RCC.d1ccipr().modify(|w| w.set_ckpersel(ckpersel));
|
|
|
|
// Set timer clocks prescaler setting
|
|
RCC.cfgr().modify(|w| w.set_timpre(timpre));
|
|
|
|
// Select system clock source
|
|
let sw = match (sys_use_pll1_p, self.config.hse.is_some()) {
|
|
(true, _) => Sw::PLL1,
|
|
(false, true) => Sw::HSE,
|
|
_ => Sw::HSI,
|
|
};
|
|
RCC.cfgr().modify(|w| w.set_sw(sw));
|
|
while RCC.cfgr().read().sws() != sw.0 {}
|
|
|
|
// IO compensation cell - Requires CSI clock and SYSCFG
|
|
assert!(RCC.cr().read().csirdy());
|
|
RCC.apb4enr()
|
|
.modify(|w| w.set_syscfgen(Apb4enrSyscfgen::ENABLED));
|
|
|
|
// Enable the compensation cell, using back-bias voltage code
|
|
// provide by the cell.
|
|
critical_section::with(|_| {
|
|
SYSCFG.cccsr().modify(|w| {
|
|
w.set_en(true);
|
|
w.set_cs(false);
|
|
w.set_hslv(false);
|
|
})
|
|
});
|
|
while !SYSCFG.cccsr().read().ready() {}
|
|
|
|
CoreClocks {
|
|
hclk: Hertz(rcc_hclk),
|
|
pclk1: Hertz(rcc_pclk1),
|
|
pclk2: Hertz(rcc_pclk2),
|
|
pclk3: Hertz(rcc_pclk3),
|
|
pclk4: Hertz(rcc_pclk4),
|
|
ppre1,
|
|
ppre2,
|
|
ppre3,
|
|
ppre4,
|
|
csi_ck: Some(CSI),
|
|
hsi_ck: Some(HSI),
|
|
hsi48_ck: Some(HSI48),
|
|
lsi_ck: Some(LSI),
|
|
per_ck: Some(per_ck),
|
|
hse_ck,
|
|
pll1_p_ck: pll1_p_ck.map(Hertz),
|
|
pll1_q_ck: pll1_q_ck.map(Hertz),
|
|
pll1_r_ck: pll1_r_ck.map(Hertz),
|
|
pll2_p_ck: pll2_p_ck.map(Hertz),
|
|
pll2_q_ck: pll2_q_ck.map(Hertz),
|
|
pll2_r_ck: pll2_r_ck.map(Hertz),
|
|
pll3_p_ck: pll3_p_ck.map(Hertz),
|
|
pll3_q_ck: pll3_q_ck.map(Hertz),
|
|
pll3_r_ck: pll3_r_ck.map(Hertz),
|
|
timx_ker_ck: rcc_timerx_ker_ck.map(Hertz),
|
|
timy_ker_ck: rcc_timery_ker_ck.map(Hertz),
|
|
sys_ck,
|
|
c_ck: Hertz(sys_d1cpre_ck),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Enables debugging during WFI/WFE
|
|
///
|
|
/// Set `enable_dma1` to true if you do not have at least one bus master (other than the CPU)
|
|
/// enable during WFI/WFE
|
|
pub fn enable_debug_wfe(&mut self, enable_dma1: bool) {
|
|
use crate::pac::rcc::vals::Ahb1enrDma1en;
|
|
|
|
// NOTE(unsafe) We have exclusive access to the RCC
|
|
unsafe {
|
|
if enable_dma1 {
|
|
RCC.ahb1enr()
|
|
.modify(|w| w.set_dma1en(Ahb1enrDma1en::ENABLED));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Setup traceclk
|
|
/// Returns a pll1_r_ck
|
|
fn traceclk_setup(&mut self, sys_use_pll1_p: bool) {
|
|
let pll1_r_ck = match (sys_use_pll1_p, self.config.pll1.r_ck) {
|
|
// pll1_p_ck selected as system clock but pll1_r_ck not
|
|
// set. The traceclk mux is synchronous with the system
|
|
// clock mux, but has pll1_r_ck as an input. In order to
|
|
// keep traceclk running, we force a pll1_r_ck.
|
|
(true, None) => Some(Hertz(self.config.pll1.p_ck.unwrap().0 / 2)),
|
|
|
|
// Either pll1 not selected as system clock, free choice
|
|
// of pll1_r_ck. Or pll1 is selected, assume user has set
|
|
// a suitable pll1_r_ck frequency.
|
|
_ => self.config.pll1.r_ck,
|
|
};
|
|
self.config.pll1.r_ck = pll1_r_ck;
|
|
}
|
|
|
|
/// Divider calculator for pclk 1 - 4
|
|
///
|
|
/// Returns real pclk, bits, ppre and the timer kernel clock
|
|
fn ppre_calculate(
|
|
requested_pclk: u32,
|
|
hclk: u32,
|
|
max_pclk: u32,
|
|
tim_pre: Option<Timpre>,
|
|
) -> (u32, u8, u8, Option<u32>) {
|
|
let (bits, ppre) = match (hclk + requested_pclk - 1) / requested_pclk {
|
|
0 => panic!(),
|
|
1 => (0b000, 1),
|
|
2 => (0b100, 2),
|
|
3..=5 => (0b101, 4),
|
|
6..=11 => (0b110, 8),
|
|
_ => (0b111, 16),
|
|
};
|
|
let real_pclk = hclk / u32::from(ppre);
|
|
assert!(real_pclk < max_pclk);
|
|
|
|
let tim_ker_clk = if let Some(tim_pre) = tim_pre {
|
|
let clk = match (bits, tim_pre) {
|
|
(0b101, Timpre::DEFAULTX2) => hclk / 2,
|
|
(0b110, Timpre::DEFAULTX4) => hclk / 2,
|
|
(0b110, Timpre::DEFAULTX2) => hclk / 4,
|
|
(0b111, Timpre::DEFAULTX4) => hclk / 4,
|
|
(0b111, Timpre::DEFAULTX2) => hclk / 8,
|
|
_ => hclk,
|
|
};
|
|
Some(clk)
|
|
} else {
|
|
None
|
|
};
|
|
(real_pclk, bits, ppre, tim_ker_clk)
|
|
}
|
|
|
|
/// Setup sys_ck
|
|
/// Returns sys_ck frequency, and a pll1_p_ck
|
|
fn sys_ck_setup(&mut self, srcclk: Hertz) -> (Hertz, bool) {
|
|
// Compare available with wanted clocks
|
|
let sys_ck = self.config.sys_ck.unwrap_or(srcclk);
|
|
|
|
if sys_ck != srcclk {
|
|
// The requested system clock is not the immediately available
|
|
// HSE/HSI clock. Perhaps there are other ways of obtaining
|
|
// the requested system clock (such as `HSIDIV`) but we will
|
|
// ignore those for now.
|
|
//
|
|
// Therefore we must use pll1_p_ck
|
|
let pll1_p_ck = match self.config.pll1.p_ck {
|
|
Some(p_ck) => {
|
|
assert!(p_ck == sys_ck,
|
|
"Error: Cannot set pll1_p_ck independently as it must be used to generate sys_ck");
|
|
Some(p_ck)
|
|
}
|
|
None => Some(sys_ck),
|
|
};
|
|
self.config.pll1.p_ck = pll1_p_ck;
|
|
|
|
(sys_ck, true)
|
|
} else {
|
|
// sys_ck is derived directly from a source clock
|
|
// (HSE/HSI). pll1_p_ck can be as requested
|
|
(sys_ck, false)
|
|
}
|
|
}
|
|
|
|
fn flash_setup(rcc_aclk: u32, vos: VoltageScale) {
|
|
use crate::pac::FLASH;
|
|
|
|
// ACLK in MHz, round down and subtract 1 from integers. eg.
|
|
// 61_999_999 -> 61MHz
|
|
// 62_000_000 -> 61MHz
|
|
// 62_000_001 -> 62MHz
|
|
let rcc_aclk_mhz = (rcc_aclk - 1) / 1_000_000;
|
|
|
|
// See RM0433 Rev 7 Table 17. FLASH recommended number of wait
|
|
// states and programming delay
|
|
let (wait_states, progr_delay) = match vos {
|
|
// VOS 0 range VCORE 1.26V - 1.40V
|
|
VoltageScale::Scale0 => match rcc_aclk_mhz {
|
|
0..=69 => (0, 0),
|
|
70..=139 => (1, 1),
|
|
140..=184 => (2, 1),
|
|
185..=209 => (2, 2),
|
|
210..=224 => (3, 2),
|
|
225..=239 => (4, 2),
|
|
_ => (7, 3),
|
|
},
|
|
// VOS 1 range VCORE 1.15V - 1.26V
|
|
VoltageScale::Scale1 => match rcc_aclk_mhz {
|
|
0..=69 => (0, 0),
|
|
70..=139 => (1, 1),
|
|
140..=184 => (2, 1),
|
|
185..=209 => (2, 2),
|
|
210..=224 => (3, 2),
|
|
_ => (7, 3),
|
|
},
|
|
// VOS 2 range VCORE 1.05V - 1.15V
|
|
VoltageScale::Scale2 => match rcc_aclk_mhz {
|
|
0..=54 => (0, 0),
|
|
55..=109 => (1, 1),
|
|
110..=164 => (2, 1),
|
|
165..=224 => (3, 2),
|
|
_ => (7, 3),
|
|
},
|
|
// VOS 3 range VCORE 0.95V - 1.05V
|
|
VoltageScale::Scale3 => match rcc_aclk_mhz {
|
|
0..=44 => (0, 0),
|
|
45..=89 => (1, 1),
|
|
90..=134 => (2, 1),
|
|
135..=179 => (3, 2),
|
|
180..=224 => (4, 2),
|
|
_ => (7, 3),
|
|
},
|
|
};
|
|
|
|
// NOTE(unsafe) Atomic write
|
|
unsafe {
|
|
FLASH.acr().write(|w| {
|
|
w.set_wrhighfreq(progr_delay);
|
|
w.set_latency(wait_states)
|
|
});
|
|
while FLASH.acr().read().latency() != wait_states {}
|
|
}
|
|
}
|
|
}
|