embassy/embassy-nrf/src/spim.rs

609 lines
19 KiB
Rust

//! Serial Peripheral Instance in master mode (SPIM) driver.
#![macro_use]
use core::future::poll_fn;
use core::marker::PhantomData;
use core::sync::atomic::{compiler_fence, Ordering};
use core::task::Poll;
use embassy_embedded_hal::SetConfig;
use embassy_hal_internal::{into_ref, PeripheralRef};
pub use embedded_hal_02::spi::{Mode, Phase, Polarity, MODE_0, MODE_1, MODE_2, MODE_3};
pub use pac::spim0::frequency::FREQUENCY_A as Frequency;
use crate::chip::FORCE_COPY_BUFFER_SIZE;
use crate::gpio::sealed::Pin as _;
use crate::gpio::{self, AnyPin, Pin as GpioPin, PselBits};
use crate::interrupt::typelevel::Interrupt;
use crate::util::{slice_in_ram_or, slice_ptr_parts, slice_ptr_parts_mut};
use crate::{interrupt, pac, Peripheral};
/// SPIM error
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub enum Error {
/// TX buffer was too long.
TxBufferTooLong,
/// RX buffer was too long.
RxBufferTooLong,
/// EasyDMA can only read from data memory, read only buffers in flash will fail.
BufferNotInRAM,
}
/// SPIM configuration.
#[non_exhaustive]
pub struct Config {
/// Frequency
pub frequency: Frequency,
/// SPI mode
pub mode: Mode,
/// Overread character.
///
/// When doing bidirectional transfers, if the TX buffer is shorter than the RX buffer,
/// this byte will be transmitted in the MOSI line for the left-over bytes.
pub orc: u8,
}
impl Default for Config {
fn default() -> Self {
Self {
frequency: Frequency::M1,
mode: MODE_0,
orc: 0x00,
}
}
}
/// Interrupt handler.
pub struct InterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
unsafe fn on_interrupt() {
let r = T::regs();
let s = T::state();
#[cfg(feature = "_nrf52832_anomaly_109")]
if r.events_started.read().bits() != 0 {
s.waker.wake();
r.intenclr.write(|w| w.started().clear());
}
if r.events_end.read().bits() != 0 {
s.waker.wake();
r.intenclr.write(|w| w.end().clear());
}
}
}
/// SPIM driver.
pub struct Spim<'d, T: Instance> {
_p: PeripheralRef<'d, T>,
}
impl<'d, T: Instance> Spim<'d, T> {
/// Create a new SPIM driver.
pub fn new(
spim: impl Peripheral<P = T> + 'd,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
sck: impl Peripheral<P = impl GpioPin> + 'd,
miso: impl Peripheral<P = impl GpioPin> + 'd,
mosi: impl Peripheral<P = impl GpioPin> + 'd,
config: Config,
) -> Self {
into_ref!(sck, miso, mosi);
Self::new_inner(
spim,
sck.map_into(),
Some(miso.map_into()),
Some(mosi.map_into()),
config,
)
}
/// Create a new SPIM driver, capable of TX only (MOSI only).
pub fn new_txonly(
spim: impl Peripheral<P = T> + 'd,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
sck: impl Peripheral<P = impl GpioPin> + 'd,
mosi: impl Peripheral<P = impl GpioPin> + 'd,
config: Config,
) -> Self {
into_ref!(sck, mosi);
Self::new_inner(spim, sck.map_into(), None, Some(mosi.map_into()), config)
}
/// Create a new SPIM driver, capable of RX only (MISO only).
pub fn new_rxonly(
spim: impl Peripheral<P = T> + 'd,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
sck: impl Peripheral<P = impl GpioPin> + 'd,
miso: impl Peripheral<P = impl GpioPin> + 'd,
config: Config,
) -> Self {
into_ref!(sck, miso);
Self::new_inner(spim, sck.map_into(), Some(miso.map_into()), None, config)
}
fn new_inner(
spim: impl Peripheral<P = T> + 'd,
sck: PeripheralRef<'d, AnyPin>,
miso: Option<PeripheralRef<'d, AnyPin>>,
mosi: Option<PeripheralRef<'d, AnyPin>>,
config: Config,
) -> Self {
into_ref!(spim);
let r = T::regs();
// Configure pins
sck.conf().write(|w| w.dir().output().drive().h0h1());
if let Some(mosi) = &mosi {
mosi.conf().write(|w| w.dir().output().drive().h0h1());
}
if let Some(miso) = &miso {
miso.conf().write(|w| w.input().connect().drive().h0h1());
}
match config.mode.polarity {
Polarity::IdleHigh => {
sck.set_high();
if let Some(mosi) = &mosi {
mosi.set_high();
}
}
Polarity::IdleLow => {
sck.set_low();
if let Some(mosi) = &mosi {
mosi.set_low();
}
}
}
// Select pins.
r.psel.sck.write(|w| unsafe { w.bits(sck.psel_bits()) });
r.psel.mosi.write(|w| unsafe { w.bits(mosi.psel_bits()) });
r.psel.miso.write(|w| unsafe { w.bits(miso.psel_bits()) });
// Enable SPIM instance.
r.enable.write(|w| w.enable().enabled());
let mut spim = Self { _p: spim };
// Apply runtime peripheral configuration
Self::set_config(&mut spim, &config);
// Disable all events interrupts
r.intenclr.write(|w| unsafe { w.bits(0xFFFF_FFFF) });
T::Interrupt::unpend();
unsafe { T::Interrupt::enable() };
spim
}
fn prepare(&mut self, rx: *mut [u8], tx: *const [u8]) -> Result<(), Error> {
slice_in_ram_or(tx, Error::BufferNotInRAM)?;
// NOTE: RAM slice check for rx is not necessary, as a mutable
// slice can only be built from data located in RAM.
compiler_fence(Ordering::SeqCst);
let r = T::regs();
// Set up the DMA write.
let (ptr, tx_len) = slice_ptr_parts(tx);
r.txd.ptr.write(|w| unsafe { w.ptr().bits(ptr as _) });
r.txd.maxcnt.write(|w| unsafe { w.maxcnt().bits(tx_len as _) });
// Set up the DMA read.
let (ptr, rx_len) = slice_ptr_parts_mut(rx);
r.rxd.ptr.write(|w| unsafe { w.ptr().bits(ptr as _) });
r.rxd.maxcnt.write(|w| unsafe { w.maxcnt().bits(rx_len as _) });
#[cfg(feature = "_nrf52832_anomaly_109")]
{
let s = T::state();
r.events_started.reset();
// Set rx/tx buffer lengths to 0...
r.txd.maxcnt.reset();
r.rxd.maxcnt.reset();
// ...and keep track of original buffer lengths...
s.tx.store(tx_len as _, Ordering::Relaxed);
s.rx.store(rx_len as _, Ordering::Relaxed);
// ...signalling the start of the fake transfer.
r.intenset.write(|w| w.started().bit(true));
}
// Reset and enable the event
r.events_end.reset();
r.intenset.write(|w| w.end().set());
// Start SPI transaction.
r.tasks_start.write(|w| unsafe { w.bits(1) });
Ok(())
}
fn blocking_inner_from_ram(&mut self, rx: *mut [u8], tx: *const [u8]) -> Result<(), Error> {
self.prepare(rx, tx)?;
#[cfg(feature = "_nrf52832_anomaly_109")]
while let Poll::Pending = self.nrf52832_dma_workaround_status() {}
// Wait for 'end' event.
while T::regs().events_end.read().bits() == 0 {}
compiler_fence(Ordering::SeqCst);
Ok(())
}
fn blocking_inner(&mut self, rx: &mut [u8], tx: &[u8]) -> Result<(), Error> {
match self.blocking_inner_from_ram(rx, tx) {
Ok(_) => Ok(()),
Err(Error::BufferNotInRAM) => {
trace!("Copying SPIM tx buffer into RAM for DMA");
let tx_ram_buf = &mut [0; FORCE_COPY_BUFFER_SIZE][..tx.len()];
tx_ram_buf.copy_from_slice(tx);
self.blocking_inner_from_ram(rx, tx_ram_buf)
}
Err(error) => Err(error),
}
}
async fn async_inner_from_ram(&mut self, rx: *mut [u8], tx: *const [u8]) -> Result<(), Error> {
self.prepare(rx, tx)?;
#[cfg(feature = "_nrf52832_anomaly_109")]
poll_fn(|cx| {
let s = T::state();
s.waker.register(cx.waker());
self.nrf52832_dma_workaround_status()
})
.await;
// Wait for 'end' event.
poll_fn(|cx| {
T::state().waker.register(cx.waker());
if T::regs().events_end.read().bits() != 0 {
return Poll::Ready(());
}
Poll::Pending
})
.await;
compiler_fence(Ordering::SeqCst);
Ok(())
}
async fn async_inner(&mut self, rx: &mut [u8], tx: &[u8]) -> Result<(), Error> {
match self.async_inner_from_ram(rx, tx).await {
Ok(_) => Ok(()),
Err(Error::BufferNotInRAM) => {
trace!("Copying SPIM tx buffer into RAM for DMA");
let tx_ram_buf = &mut [0; FORCE_COPY_BUFFER_SIZE][..tx.len()];
tx_ram_buf.copy_from_slice(tx);
self.async_inner_from_ram(rx, tx_ram_buf).await
}
Err(error) => Err(error),
}
}
/// Reads data from the SPI bus without sending anything. Blocks until the buffer has been filled.
pub fn blocking_read(&mut self, data: &mut [u8]) -> Result<(), Error> {
self.blocking_inner(data, &[])
}
/// Simultaneously sends and receives data. Blocks until the transmission is completed.
/// If necessary, the write buffer will be copied into RAM (see struct description for detail).
pub fn blocking_transfer(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Error> {
self.blocking_inner(read, write)
}
/// Same as [`blocking_transfer`](Spim::blocking_transfer) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
pub fn blocking_transfer_from_ram(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Error> {
self.blocking_inner(read, write)
}
/// Simultaneously sends and receives data.
/// Places the received data into the same buffer and blocks until the transmission is completed.
pub fn blocking_transfer_in_place(&mut self, data: &mut [u8]) -> Result<(), Error> {
self.blocking_inner_from_ram(data, data)
}
/// Sends data, discarding any received data. Blocks until the transmission is completed.
/// If necessary, the write buffer will be copied into RAM (see struct description for detail).
pub fn blocking_write(&mut self, data: &[u8]) -> Result<(), Error> {
self.blocking_inner(&mut [], data)
}
/// Same as [`blocking_write`](Spim::blocking_write) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
pub fn blocking_write_from_ram(&mut self, data: &[u8]) -> Result<(), Error> {
self.blocking_inner(&mut [], data)
}
/// Reads data from the SPI bus without sending anything.
pub async fn read(&mut self, data: &mut [u8]) -> Result<(), Error> {
self.async_inner(data, &[]).await
}
/// Simultaneously sends and receives data.
/// If necessary, the write buffer will be copied into RAM (see struct description for detail).
pub async fn transfer(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Error> {
self.async_inner(read, write).await
}
/// Same as [`transfer`](Spim::transfer) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
pub async fn transfer_from_ram(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Error> {
self.async_inner_from_ram(read, write).await
}
/// Simultaneously sends and receives data. Places the received data into the same buffer.
pub async fn transfer_in_place(&mut self, data: &mut [u8]) -> Result<(), Error> {
self.async_inner_from_ram(data, data).await
}
/// Sends data, discarding any received data.
/// If necessary, the write buffer will be copied into RAM (see struct description for detail).
pub async fn write(&mut self, data: &[u8]) -> Result<(), Error> {
self.async_inner(&mut [], data).await
}
/// Same as [`write`](Spim::write) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
pub async fn write_from_ram(&mut self, data: &[u8]) -> Result<(), Error> {
self.async_inner_from_ram(&mut [], data).await
}
#[cfg(feature = "_nrf52832_anomaly_109")]
fn nrf52832_dma_workaround_status(&mut self) -> Poll<()> {
let r = T::regs();
if r.events_started.read().bits() != 0 {
let s = T::state();
// Handle the first "fake" transmission
r.events_started.reset();
r.events_end.reset();
// Update DMA registers with correct rx/tx buffer sizes
r.rxd
.maxcnt
.write(|w| unsafe { w.maxcnt().bits(s.rx.load(Ordering::Relaxed)) });
r.txd
.maxcnt
.write(|w| unsafe { w.maxcnt().bits(s.tx.load(Ordering::Relaxed)) });
r.intenset.write(|w| w.end().set());
// ... and start actual, hopefully glitch-free transmission
r.tasks_start.write(|w| unsafe { w.bits(1) });
return Poll::Ready(());
}
Poll::Pending
}
}
impl<'d, T: Instance> Drop for Spim<'d, T> {
fn drop(&mut self) {
trace!("spim drop");
// TODO check for abort, wait for xxxstopped
// disable!
let r = T::regs();
r.enable.write(|w| w.enable().disabled());
gpio::deconfigure_pin(r.psel.sck.read().bits());
gpio::deconfigure_pin(r.psel.miso.read().bits());
gpio::deconfigure_pin(r.psel.mosi.read().bits());
// Disable all events interrupts
T::Interrupt::disable();
trace!("spim drop: done");
}
}
pub(crate) mod sealed {
#[cfg(feature = "_nrf52832_anomaly_109")]
use core::sync::atomic::AtomicU8;
use embassy_sync::waitqueue::AtomicWaker;
use super::*;
pub struct State {
pub waker: AtomicWaker,
#[cfg(feature = "_nrf52832_anomaly_109")]
pub rx: AtomicU8,
#[cfg(feature = "_nrf52832_anomaly_109")]
pub tx: AtomicU8,
}
impl State {
pub const fn new() -> Self {
Self {
waker: AtomicWaker::new(),
#[cfg(feature = "_nrf52832_anomaly_109")]
rx: AtomicU8::new(0),
#[cfg(feature = "_nrf52832_anomaly_109")]
tx: AtomicU8::new(0),
}
}
}
pub trait Instance {
fn regs() -> &'static pac::spim0::RegisterBlock;
fn state() -> &'static State;
}
}
/// SPIM peripheral instance
pub trait Instance: Peripheral<P = Self> + sealed::Instance + 'static {
/// Interrupt for this peripheral.
type Interrupt: interrupt::typelevel::Interrupt;
}
macro_rules! impl_spim {
($type:ident, $pac_type:ident, $irq:ident) => {
impl crate::spim::sealed::Instance for peripherals::$type {
fn regs() -> &'static pac::spim0::RegisterBlock {
unsafe { &*pac::$pac_type::ptr() }
}
fn state() -> &'static crate::spim::sealed::State {
static STATE: crate::spim::sealed::State = crate::spim::sealed::State::new();
&STATE
}
}
impl crate::spim::Instance for peripherals::$type {
type Interrupt = crate::interrupt::typelevel::$irq;
}
};
}
// ====================
mod eh02 {
use super::*;
impl<'d, T: Instance> embedded_hal_02::blocking::spi::Transfer<u8> for Spim<'d, T> {
type Error = Error;
fn transfer<'w>(&mut self, words: &'w mut [u8]) -> Result<&'w [u8], Self::Error> {
self.blocking_transfer_in_place(words)?;
Ok(words)
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::spi::Write<u8> for Spim<'d, T> {
type Error = Error;
fn write(&mut self, words: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(words)
}
}
}
#[cfg(feature = "unstable-traits")]
mod eh1 {
use super::*;
impl embedded_hal_1::spi::Error for Error {
fn kind(&self) -> embedded_hal_1::spi::ErrorKind {
match *self {
Self::TxBufferTooLong => embedded_hal_1::spi::ErrorKind::Other,
Self::RxBufferTooLong => embedded_hal_1::spi::ErrorKind::Other,
Self::BufferNotInRAM => embedded_hal_1::spi::ErrorKind::Other,
}
}
}
impl<'d, T: Instance> embedded_hal_1::spi::ErrorType for Spim<'d, T> {
type Error = Error;
}
impl<'d, T: Instance> embedded_hal_1::spi::SpiBus<u8> for Spim<'d, T> {
fn flush(&mut self) -> Result<(), Self::Error> {
Ok(())
}
fn read(&mut self, words: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_transfer(words, &[])
}
fn write(&mut self, words: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(words)
}
fn transfer(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Self::Error> {
self.blocking_transfer(read, write)
}
fn transfer_in_place(&mut self, words: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_transfer_in_place(words)
}
}
}
#[cfg(all(feature = "unstable-traits", feature = "nightly"))]
mod eha {
use super::*;
impl<'d, T: Instance> embedded_hal_async::spi::SpiBus<u8> for Spim<'d, T> {
async fn flush(&mut self) -> Result<(), Error> {
Ok(())
}
async fn read(&mut self, words: &mut [u8]) -> Result<(), Error> {
self.read(words).await
}
async fn write(&mut self, data: &[u8]) -> Result<(), Error> {
self.write(data).await
}
async fn transfer(&mut self, rx: &mut [u8], tx: &[u8]) -> Result<(), Error> {
self.transfer(rx, tx).await
}
async fn transfer_in_place(&mut self, words: &mut [u8]) -> Result<(), Error> {
self.transfer_in_place(words).await
}
}
}
impl<'d, T: Instance> SetConfig for Spim<'d, T> {
type Config = Config;
fn set_config(&mut self, config: &Self::Config) {
let r = T::regs();
// Configure mode.
let mode = config.mode;
r.config.write(|w| {
match mode {
MODE_0 => {
w.order().msb_first();
w.cpol().active_high();
w.cpha().leading();
}
MODE_1 => {
w.order().msb_first();
w.cpol().active_high();
w.cpha().trailing();
}
MODE_2 => {
w.order().msb_first();
w.cpol().active_low();
w.cpha().leading();
}
MODE_3 => {
w.order().msb_first();
w.cpol().active_low();
w.cpha().trailing();
}
}
w
});
// Configure frequency.
let frequency = config.frequency;
r.frequency.write(|w| w.frequency().variant(frequency));
// Set over-read character
let orc = config.orc;
r.orc.write(|w| unsafe { w.orc().bits(orc) });
}
}