925 lines
30 KiB
Rust
925 lines
30 KiB
Rust
//! I2C-compatible Two Wire Interface in master mode (TWIM) driver.
|
|
|
|
#![macro_use]
|
|
|
|
use core::future::{poll_fn, Future};
|
|
use core::marker::PhantomData;
|
|
use core::sync::atomic::compiler_fence;
|
|
use core::sync::atomic::Ordering::SeqCst;
|
|
use core::task::Poll;
|
|
|
|
use embassy_embedded_hal::SetConfig;
|
|
use embassy_hal_common::{into_ref, PeripheralRef};
|
|
use embassy_sync::waitqueue::AtomicWaker;
|
|
#[cfg(feature = "time")]
|
|
use embassy_time::{Duration, Instant};
|
|
|
|
use crate::chip::{EASY_DMA_SIZE, FORCE_COPY_BUFFER_SIZE};
|
|
use crate::gpio::Pin as GpioPin;
|
|
use crate::interrupt::{self, Interrupt, InterruptExt};
|
|
use crate::util::{slice_in_ram, slice_in_ram_or};
|
|
use crate::{gpio, pac, Peripheral};
|
|
|
|
/// TWI frequency
|
|
#[derive(Clone, Copy)]
|
|
pub enum Frequency {
|
|
/// 100 kbps
|
|
K100 = 26738688,
|
|
/// 250 kbps
|
|
K250 = 67108864,
|
|
/// 400 kbps
|
|
K400 = 104857600,
|
|
}
|
|
|
|
/// TWIM config.
|
|
#[non_exhaustive]
|
|
pub struct Config {
|
|
/// Frequency
|
|
pub frequency: Frequency,
|
|
|
|
/// Enable high drive for the SDA line.
|
|
pub sda_high_drive: bool,
|
|
|
|
/// Enable internal pullup for the SDA line.
|
|
///
|
|
/// Note that using external pullups is recommended for I2C, and
|
|
/// most boards already have them.
|
|
pub sda_pullup: bool,
|
|
|
|
/// Enable high drive for the SCL line.
|
|
pub scl_high_drive: bool,
|
|
|
|
/// Enable internal pullup for the SCL line.
|
|
///
|
|
/// Note that using external pullups is recommended for I2C, and
|
|
/// most boards already have them.
|
|
pub scl_pullup: bool,
|
|
}
|
|
|
|
impl Default for Config {
|
|
fn default() -> Self {
|
|
Self {
|
|
frequency: Frequency::K100,
|
|
scl_high_drive: false,
|
|
sda_pullup: false,
|
|
sda_high_drive: false,
|
|
scl_pullup: false,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// TWI error.
|
|
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
|
|
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
|
#[non_exhaustive]
|
|
pub enum Error {
|
|
/// TX buffer was too long.
|
|
TxBufferTooLong,
|
|
/// RX buffer was too long.
|
|
RxBufferTooLong,
|
|
/// Data transmit failed.
|
|
Transmit,
|
|
/// Data reception failed.
|
|
Receive,
|
|
/// The buffer is not in data RAM. It's most likely in flash, and nRF's DMA cannot access flash.
|
|
BufferNotInRAM,
|
|
/// Didn't receive an ACK bit after the address byte. Address might be wrong, or the i2c device chip might not be connected properly.
|
|
AddressNack,
|
|
/// Didn't receive an ACK bit after a data byte.
|
|
DataNack,
|
|
/// Overrun error.
|
|
Overrun,
|
|
/// Timeout error.
|
|
Timeout,
|
|
}
|
|
|
|
/// Interrupt handler.
|
|
pub struct InterruptHandler<T: Instance> {
|
|
_phantom: PhantomData<T>,
|
|
}
|
|
|
|
impl<T: Instance> interrupt::Handler<T::Interrupt> for InterruptHandler<T> {
|
|
unsafe fn on_interrupt() {
|
|
let r = T::regs();
|
|
let s = T::state();
|
|
|
|
if r.events_stopped.read().bits() != 0 {
|
|
s.end_waker.wake();
|
|
r.intenclr.write(|w| w.stopped().clear());
|
|
}
|
|
if r.events_error.read().bits() != 0 {
|
|
s.end_waker.wake();
|
|
r.intenclr.write(|w| w.error().clear());
|
|
}
|
|
}
|
|
}
|
|
|
|
/// TWI driver.
|
|
pub struct Twim<'d, T: Instance> {
|
|
_p: PeripheralRef<'d, T>,
|
|
}
|
|
|
|
impl<'d, T: Instance> Twim<'d, T> {
|
|
/// Create a new TWI driver.
|
|
pub fn new(
|
|
twim: impl Peripheral<P = T> + 'd,
|
|
_irq: impl interrupt::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
|
|
sda: impl Peripheral<P = impl GpioPin> + 'd,
|
|
scl: impl Peripheral<P = impl GpioPin> + 'd,
|
|
config: Config,
|
|
) -> Self {
|
|
into_ref!(twim, sda, scl);
|
|
|
|
let r = T::regs();
|
|
|
|
// Configure pins
|
|
sda.conf().write(|w| {
|
|
w.dir().input();
|
|
w.input().connect();
|
|
if config.sda_high_drive {
|
|
w.drive().h0d1();
|
|
} else {
|
|
w.drive().s0d1();
|
|
}
|
|
if config.sda_pullup {
|
|
w.pull().pullup();
|
|
}
|
|
w
|
|
});
|
|
scl.conf().write(|w| {
|
|
w.dir().input();
|
|
w.input().connect();
|
|
if config.scl_high_drive {
|
|
w.drive().h0d1();
|
|
} else {
|
|
w.drive().s0d1();
|
|
}
|
|
if config.scl_pullup {
|
|
w.pull().pullup();
|
|
}
|
|
w
|
|
});
|
|
|
|
// Select pins.
|
|
r.psel.sda.write(|w| unsafe { w.bits(sda.psel_bits()) });
|
|
r.psel.scl.write(|w| unsafe { w.bits(scl.psel_bits()) });
|
|
|
|
// Enable TWIM instance.
|
|
r.enable.write(|w| w.enable().enabled());
|
|
|
|
// Configure frequency.
|
|
r.frequency
|
|
.write(|w| unsafe { w.frequency().bits(config.frequency as u32) });
|
|
|
|
// Disable all events interrupts
|
|
r.intenclr.write(|w| unsafe { w.bits(0xFFFF_FFFF) });
|
|
|
|
unsafe { T::Interrupt::steal() }.unpend();
|
|
unsafe { T::Interrupt::steal() }.enable();
|
|
|
|
Self { _p: twim }
|
|
}
|
|
|
|
/// Set TX buffer, checking that it is in RAM and has suitable length.
|
|
unsafe fn set_tx_buffer(&mut self, buffer: &[u8]) -> Result<(), Error> {
|
|
slice_in_ram_or(buffer, Error::BufferNotInRAM)?;
|
|
|
|
if buffer.len() > EASY_DMA_SIZE {
|
|
return Err(Error::TxBufferTooLong);
|
|
}
|
|
|
|
let r = T::regs();
|
|
|
|
r.txd.ptr.write(|w|
|
|
// We're giving the register a pointer to the stack. Since we're
|
|
// waiting for the I2C transaction to end before this stack pointer
|
|
// becomes invalid, there's nothing wrong here.
|
|
//
|
|
// The PTR field is a full 32 bits wide and accepts the full range
|
|
// of values.
|
|
w.ptr().bits(buffer.as_ptr() as u32));
|
|
r.txd.maxcnt.write(|w|
|
|
// We're giving it the length of the buffer, so no danger of
|
|
// accessing invalid memory. We have verified that the length of the
|
|
// buffer fits in an `u8`, so the cast to `u8` is also fine.
|
|
//
|
|
// The MAXCNT field is 8 bits wide and accepts the full range of
|
|
// values.
|
|
w.maxcnt().bits(buffer.len() as _));
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Set RX buffer, checking that it has suitable length.
|
|
unsafe fn set_rx_buffer(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
|
|
// NOTE: RAM slice check is not necessary, as a mutable
|
|
// slice can only be built from data located in RAM.
|
|
|
|
if buffer.len() > EASY_DMA_SIZE {
|
|
return Err(Error::RxBufferTooLong);
|
|
}
|
|
|
|
let r = T::regs();
|
|
|
|
r.rxd.ptr.write(|w|
|
|
// We're giving the register a pointer to the stack. Since we're
|
|
// waiting for the I2C transaction to end before this stack pointer
|
|
// becomes invalid, there's nothing wrong here.
|
|
//
|
|
// The PTR field is a full 32 bits wide and accepts the full range
|
|
// of values.
|
|
w.ptr().bits(buffer.as_mut_ptr() as u32));
|
|
r.rxd.maxcnt.write(|w|
|
|
// We're giving it the length of the buffer, so no danger of
|
|
// accessing invalid memory. We have verified that the length of the
|
|
// buffer fits in an `u8`, so the cast to the type of maxcnt
|
|
// is also fine.
|
|
//
|
|
// Note that that nrf52840 maxcnt is a wider
|
|
// type than a u8, so we use a `_` cast rather than a `u8` cast.
|
|
// The MAXCNT field is thus at least 8 bits wide and accepts the
|
|
// full range of values that fit in a `u8`.
|
|
w.maxcnt().bits(buffer.len() as _));
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn clear_errorsrc(&mut self) {
|
|
let r = T::regs();
|
|
r.errorsrc
|
|
.write(|w| w.anack().bit(true).dnack().bit(true).overrun().bit(true));
|
|
}
|
|
|
|
/// Get Error instance, if any occurred.
|
|
fn check_errorsrc(&self) -> Result<(), Error> {
|
|
let r = T::regs();
|
|
|
|
let err = r.errorsrc.read();
|
|
if err.anack().is_received() {
|
|
return Err(Error::AddressNack);
|
|
}
|
|
if err.dnack().is_received() {
|
|
return Err(Error::DataNack);
|
|
}
|
|
if err.overrun().is_received() {
|
|
return Err(Error::Overrun);
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn check_rx(&self, len: usize) -> Result<(), Error> {
|
|
let r = T::regs();
|
|
if r.rxd.amount.read().bits() != len as u32 {
|
|
Err(Error::Receive)
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
fn check_tx(&self, len: usize) -> Result<(), Error> {
|
|
let r = T::regs();
|
|
if r.txd.amount.read().bits() != len as u32 {
|
|
Err(Error::Transmit)
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
/// Wait for stop or error
|
|
fn blocking_wait(&mut self) {
|
|
let r = T::regs();
|
|
loop {
|
|
if r.events_stopped.read().bits() != 0 {
|
|
r.events_stopped.reset();
|
|
break;
|
|
}
|
|
if r.events_error.read().bits() != 0 {
|
|
r.events_error.reset();
|
|
r.tasks_stop.write(|w| unsafe { w.bits(1) });
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Wait for stop or error
|
|
#[cfg(feature = "time")]
|
|
fn blocking_wait_timeout(&mut self, timeout: Duration) -> Result<(), Error> {
|
|
let r = T::regs();
|
|
let deadline = Instant::now() + timeout;
|
|
loop {
|
|
if r.events_stopped.read().bits() != 0 {
|
|
r.events_stopped.reset();
|
|
break;
|
|
}
|
|
if r.events_error.read().bits() != 0 {
|
|
r.events_error.reset();
|
|
r.tasks_stop.write(|w| unsafe { w.bits(1) });
|
|
}
|
|
if Instant::now() > deadline {
|
|
r.tasks_stop.write(|w| unsafe { w.bits(1) });
|
|
return Err(Error::Timeout);
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Wait for stop or error
|
|
fn async_wait(&mut self) -> impl Future<Output = ()> {
|
|
poll_fn(move |cx| {
|
|
let r = T::regs();
|
|
let s = T::state();
|
|
|
|
s.end_waker.register(cx.waker());
|
|
if r.events_stopped.read().bits() != 0 {
|
|
r.events_stopped.reset();
|
|
|
|
return Poll::Ready(());
|
|
}
|
|
|
|
// stop if an error occured
|
|
if r.events_error.read().bits() != 0 {
|
|
r.events_error.reset();
|
|
r.tasks_stop.write(|w| unsafe { w.bits(1) });
|
|
}
|
|
|
|
Poll::Pending
|
|
})
|
|
}
|
|
|
|
fn setup_write_from_ram(&mut self, address: u8, buffer: &[u8], inten: bool) -> Result<(), Error> {
|
|
let r = T::regs();
|
|
|
|
compiler_fence(SeqCst);
|
|
|
|
r.address.write(|w| unsafe { w.address().bits(address) });
|
|
|
|
// Set up the DMA write.
|
|
unsafe { self.set_tx_buffer(buffer)? };
|
|
|
|
// Clear events
|
|
r.events_stopped.reset();
|
|
r.events_error.reset();
|
|
r.events_lasttx.reset();
|
|
self.clear_errorsrc();
|
|
|
|
if inten {
|
|
r.intenset.write(|w| w.stopped().set().error().set());
|
|
} else {
|
|
r.intenclr.write(|w| w.stopped().clear().error().clear());
|
|
}
|
|
|
|
// Start write operation.
|
|
r.shorts.write(|w| w.lasttx_stop().enabled());
|
|
r.tasks_starttx.write(|w| unsafe { w.bits(1) });
|
|
if buffer.len() == 0 {
|
|
// With a zero-length buffer, LASTTX doesn't fire (because there's no last byte!), so do the STOP ourselves.
|
|
r.tasks_stop.write(|w| unsafe { w.bits(1) });
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn setup_read(&mut self, address: u8, buffer: &mut [u8], inten: bool) -> Result<(), Error> {
|
|
let r = T::regs();
|
|
|
|
compiler_fence(SeqCst);
|
|
|
|
r.address.write(|w| unsafe { w.address().bits(address) });
|
|
|
|
// Set up the DMA read.
|
|
unsafe { self.set_rx_buffer(buffer)? };
|
|
|
|
// Clear events
|
|
r.events_stopped.reset();
|
|
r.events_error.reset();
|
|
self.clear_errorsrc();
|
|
|
|
if inten {
|
|
r.intenset.write(|w| w.stopped().set().error().set());
|
|
} else {
|
|
r.intenclr.write(|w| w.stopped().clear().error().clear());
|
|
}
|
|
|
|
// Start read operation.
|
|
r.shorts.write(|w| w.lastrx_stop().enabled());
|
|
r.tasks_startrx.write(|w| unsafe { w.bits(1) });
|
|
if buffer.len() == 0 {
|
|
// With a zero-length buffer, LASTRX doesn't fire (because there's no last byte!), so do the STOP ourselves.
|
|
r.tasks_stop.write(|w| unsafe { w.bits(1) });
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn setup_write_read_from_ram(
|
|
&mut self,
|
|
address: u8,
|
|
wr_buffer: &[u8],
|
|
rd_buffer: &mut [u8],
|
|
inten: bool,
|
|
) -> Result<(), Error> {
|
|
let r = T::regs();
|
|
|
|
compiler_fence(SeqCst);
|
|
|
|
r.address.write(|w| unsafe { w.address().bits(address) });
|
|
|
|
// Set up DMA buffers.
|
|
unsafe {
|
|
self.set_tx_buffer(wr_buffer)?;
|
|
self.set_rx_buffer(rd_buffer)?;
|
|
}
|
|
|
|
// Clear events
|
|
r.events_stopped.reset();
|
|
r.events_error.reset();
|
|
self.clear_errorsrc();
|
|
|
|
if inten {
|
|
r.intenset.write(|w| w.stopped().set().error().set());
|
|
} else {
|
|
r.intenclr.write(|w| w.stopped().clear().error().clear());
|
|
}
|
|
|
|
// Start write+read operation.
|
|
r.shorts.write(|w| {
|
|
w.lasttx_startrx().enabled();
|
|
w.lastrx_stop().enabled();
|
|
w
|
|
});
|
|
r.tasks_starttx.write(|w| unsafe { w.bits(1) });
|
|
if wr_buffer.len() == 0 && rd_buffer.len() == 0 {
|
|
// With a zero-length buffer, LASTRX/LASTTX doesn't fire (because there's no last byte!), so do the STOP ourselves.
|
|
// TODO handle when only one of the buffers is zero length
|
|
r.tasks_stop.write(|w| unsafe { w.bits(1) });
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn setup_write_read(
|
|
&mut self,
|
|
address: u8,
|
|
wr_buffer: &[u8],
|
|
rd_buffer: &mut [u8],
|
|
inten: bool,
|
|
) -> Result<(), Error> {
|
|
match self.setup_write_read_from_ram(address, wr_buffer, rd_buffer, inten) {
|
|
Ok(_) => Ok(()),
|
|
Err(Error::BufferNotInRAM) => {
|
|
trace!("Copying TWIM tx buffer into RAM for DMA");
|
|
let tx_ram_buf = &mut [0; FORCE_COPY_BUFFER_SIZE][..wr_buffer.len()];
|
|
tx_ram_buf.copy_from_slice(wr_buffer);
|
|
self.setup_write_read_from_ram(address, &tx_ram_buf, rd_buffer, inten)
|
|
}
|
|
Err(error) => Err(error),
|
|
}
|
|
}
|
|
|
|
fn setup_write(&mut self, address: u8, wr_buffer: &[u8], inten: bool) -> Result<(), Error> {
|
|
match self.setup_write_from_ram(address, wr_buffer, inten) {
|
|
Ok(_) => Ok(()),
|
|
Err(Error::BufferNotInRAM) => {
|
|
trace!("Copying TWIM tx buffer into RAM for DMA");
|
|
let tx_ram_buf = &mut [0; FORCE_COPY_BUFFER_SIZE][..wr_buffer.len()];
|
|
tx_ram_buf.copy_from_slice(wr_buffer);
|
|
self.setup_write_from_ram(address, &tx_ram_buf, inten)
|
|
}
|
|
Err(error) => Err(error),
|
|
}
|
|
}
|
|
|
|
/// Write to an I2C slave.
|
|
///
|
|
/// The buffer must have a length of at most 255 bytes on the nRF52832
|
|
/// and at most 65535 bytes on the nRF52840.
|
|
pub fn blocking_write(&mut self, address: u8, buffer: &[u8]) -> Result<(), Error> {
|
|
self.setup_write(address, buffer, false)?;
|
|
self.blocking_wait();
|
|
compiler_fence(SeqCst);
|
|
self.check_errorsrc()?;
|
|
self.check_tx(buffer.len())?;
|
|
Ok(())
|
|
}
|
|
|
|
/// Same as [`blocking_write`](Twim::blocking_write) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
|
|
pub fn blocking_write_from_ram(&mut self, address: u8, buffer: &[u8]) -> Result<(), Error> {
|
|
self.setup_write_from_ram(address, buffer, false)?;
|
|
self.blocking_wait();
|
|
compiler_fence(SeqCst);
|
|
self.check_errorsrc()?;
|
|
self.check_tx(buffer.len())?;
|
|
Ok(())
|
|
}
|
|
|
|
/// Read from an I2C slave.
|
|
///
|
|
/// The buffer must have a length of at most 255 bytes on the nRF52832
|
|
/// and at most 65535 bytes on the nRF52840.
|
|
pub fn blocking_read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error> {
|
|
self.setup_read(address, buffer, false)?;
|
|
self.blocking_wait();
|
|
compiler_fence(SeqCst);
|
|
self.check_errorsrc()?;
|
|
self.check_rx(buffer.len())?;
|
|
Ok(())
|
|
}
|
|
|
|
/// Write data to an I2C slave, then read data from the slave without
|
|
/// triggering a stop condition between the two.
|
|
///
|
|
/// The buffers must have a length of at most 255 bytes on the nRF52832
|
|
/// and at most 65535 bytes on the nRF52840.
|
|
pub fn blocking_write_read(&mut self, address: u8, wr_buffer: &[u8], rd_buffer: &mut [u8]) -> Result<(), Error> {
|
|
self.setup_write_read(address, wr_buffer, rd_buffer, false)?;
|
|
self.blocking_wait();
|
|
compiler_fence(SeqCst);
|
|
self.check_errorsrc()?;
|
|
self.check_tx(wr_buffer.len())?;
|
|
self.check_rx(rd_buffer.len())?;
|
|
Ok(())
|
|
}
|
|
|
|
/// Same as [`blocking_write_read`](Twim::blocking_write_read) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
|
|
pub fn blocking_write_read_from_ram(
|
|
&mut self,
|
|
address: u8,
|
|
wr_buffer: &[u8],
|
|
rd_buffer: &mut [u8],
|
|
) -> Result<(), Error> {
|
|
self.setup_write_read_from_ram(address, wr_buffer, rd_buffer, false)?;
|
|
self.blocking_wait();
|
|
compiler_fence(SeqCst);
|
|
self.check_errorsrc()?;
|
|
self.check_tx(wr_buffer.len())?;
|
|
self.check_rx(rd_buffer.len())?;
|
|
Ok(())
|
|
}
|
|
|
|
// ===========================================
|
|
|
|
/// Write to an I2C slave with timeout.
|
|
///
|
|
/// See [`blocking_write`].
|
|
#[cfg(feature = "time")]
|
|
pub fn blocking_write_timeout(&mut self, address: u8, buffer: &[u8], timeout: Duration) -> Result<(), Error> {
|
|
self.setup_write(address, buffer, false)?;
|
|
self.blocking_wait_timeout(timeout)?;
|
|
compiler_fence(SeqCst);
|
|
self.check_errorsrc()?;
|
|
self.check_tx(buffer.len())?;
|
|
Ok(())
|
|
}
|
|
|
|
/// Same as [`blocking_write`](Twim::blocking_write) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
|
|
#[cfg(feature = "time")]
|
|
pub fn blocking_write_from_ram_timeout(
|
|
&mut self,
|
|
address: u8,
|
|
buffer: &[u8],
|
|
timeout: Duration,
|
|
) -> Result<(), Error> {
|
|
self.setup_write_from_ram(address, buffer, false)?;
|
|
self.blocking_wait_timeout(timeout)?;
|
|
compiler_fence(SeqCst);
|
|
self.check_errorsrc()?;
|
|
self.check_tx(buffer.len())?;
|
|
Ok(())
|
|
}
|
|
|
|
/// Read from an I2C slave.
|
|
///
|
|
/// The buffer must have a length of at most 255 bytes on the nRF52832
|
|
/// and at most 65535 bytes on the nRF52840.
|
|
#[cfg(feature = "time")]
|
|
pub fn blocking_read_timeout(&mut self, address: u8, buffer: &mut [u8], timeout: Duration) -> Result<(), Error> {
|
|
self.setup_read(address, buffer, false)?;
|
|
self.blocking_wait_timeout(timeout)?;
|
|
compiler_fence(SeqCst);
|
|
self.check_errorsrc()?;
|
|
self.check_rx(buffer.len())?;
|
|
Ok(())
|
|
}
|
|
|
|
/// Write data to an I2C slave, then read data from the slave without
|
|
/// triggering a stop condition between the two.
|
|
///
|
|
/// The buffers must have a length of at most 255 bytes on the nRF52832
|
|
/// and at most 65535 bytes on the nRF52840.
|
|
#[cfg(feature = "time")]
|
|
pub fn blocking_write_read_timeout(
|
|
&mut self,
|
|
address: u8,
|
|
wr_buffer: &[u8],
|
|
rd_buffer: &mut [u8],
|
|
timeout: Duration,
|
|
) -> Result<(), Error> {
|
|
self.setup_write_read(address, wr_buffer, rd_buffer, false)?;
|
|
self.blocking_wait_timeout(timeout)?;
|
|
compiler_fence(SeqCst);
|
|
self.check_errorsrc()?;
|
|
self.check_tx(wr_buffer.len())?;
|
|
self.check_rx(rd_buffer.len())?;
|
|
Ok(())
|
|
}
|
|
|
|
/// Same as [`blocking_write_read`](Twim::blocking_write_read) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
|
|
#[cfg(feature = "time")]
|
|
pub fn blocking_write_read_from_ram_timeout(
|
|
&mut self,
|
|
address: u8,
|
|
wr_buffer: &[u8],
|
|
rd_buffer: &mut [u8],
|
|
timeout: Duration,
|
|
) -> Result<(), Error> {
|
|
self.setup_write_read_from_ram(address, wr_buffer, rd_buffer, false)?;
|
|
self.blocking_wait_timeout(timeout)?;
|
|
compiler_fence(SeqCst);
|
|
self.check_errorsrc()?;
|
|
self.check_tx(wr_buffer.len())?;
|
|
self.check_rx(rd_buffer.len())?;
|
|
Ok(())
|
|
}
|
|
|
|
// ===========================================
|
|
|
|
/// Read from an I2C slave.
|
|
///
|
|
/// The buffer must have a length of at most 255 bytes on the nRF52832
|
|
/// and at most 65535 bytes on the nRF52840.
|
|
pub async fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error> {
|
|
self.setup_read(address, buffer, true)?;
|
|
self.async_wait().await;
|
|
compiler_fence(SeqCst);
|
|
self.check_errorsrc()?;
|
|
self.check_rx(buffer.len())?;
|
|
Ok(())
|
|
}
|
|
|
|
/// Write to an I2C slave.
|
|
///
|
|
/// The buffer must have a length of at most 255 bytes on the nRF52832
|
|
/// and at most 65535 bytes on the nRF52840.
|
|
pub async fn write(&mut self, address: u8, buffer: &[u8]) -> Result<(), Error> {
|
|
self.setup_write(address, buffer, true)?;
|
|
self.async_wait().await;
|
|
compiler_fence(SeqCst);
|
|
self.check_errorsrc()?;
|
|
self.check_tx(buffer.len())?;
|
|
Ok(())
|
|
}
|
|
|
|
/// Same as [`write`](Twim::write) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
|
|
pub async fn write_from_ram(&mut self, address: u8, buffer: &[u8]) -> Result<(), Error> {
|
|
self.setup_write_from_ram(address, buffer, true)?;
|
|
self.async_wait().await;
|
|
compiler_fence(SeqCst);
|
|
self.check_errorsrc()?;
|
|
self.check_tx(buffer.len())?;
|
|
Ok(())
|
|
}
|
|
|
|
/// Write data to an I2C slave, then read data from the slave without
|
|
/// triggering a stop condition between the two.
|
|
///
|
|
/// The buffers must have a length of at most 255 bytes on the nRF52832
|
|
/// and at most 65535 bytes on the nRF52840.
|
|
pub async fn write_read(&mut self, address: u8, wr_buffer: &[u8], rd_buffer: &mut [u8]) -> Result<(), Error> {
|
|
self.setup_write_read(address, wr_buffer, rd_buffer, true)?;
|
|
self.async_wait().await;
|
|
compiler_fence(SeqCst);
|
|
self.check_errorsrc()?;
|
|
self.check_tx(wr_buffer.len())?;
|
|
self.check_rx(rd_buffer.len())?;
|
|
Ok(())
|
|
}
|
|
|
|
/// Same as [`write_read`](Twim::write_read) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
|
|
pub async fn write_read_from_ram(
|
|
&mut self,
|
|
address: u8,
|
|
wr_buffer: &[u8],
|
|
rd_buffer: &mut [u8],
|
|
) -> Result<(), Error> {
|
|
self.setup_write_read_from_ram(address, wr_buffer, rd_buffer, true)?;
|
|
self.async_wait().await;
|
|
compiler_fence(SeqCst);
|
|
self.check_errorsrc()?;
|
|
self.check_tx(wr_buffer.len())?;
|
|
self.check_rx(rd_buffer.len())?;
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl<'a, T: Instance> Drop for Twim<'a, T> {
|
|
fn drop(&mut self) {
|
|
trace!("twim drop");
|
|
|
|
// TODO: check for abort
|
|
|
|
// disable!
|
|
let r = T::regs();
|
|
r.enable.write(|w| w.enable().disabled());
|
|
|
|
gpio::deconfigure_pin(r.psel.sda.read().bits());
|
|
gpio::deconfigure_pin(r.psel.scl.read().bits());
|
|
|
|
trace!("twim drop: done");
|
|
}
|
|
}
|
|
|
|
pub(crate) mod sealed {
|
|
use super::*;
|
|
|
|
pub struct State {
|
|
pub end_waker: AtomicWaker,
|
|
}
|
|
|
|
impl State {
|
|
pub const fn new() -> Self {
|
|
Self {
|
|
end_waker: AtomicWaker::new(),
|
|
}
|
|
}
|
|
}
|
|
|
|
pub trait Instance {
|
|
fn regs() -> &'static pac::twim0::RegisterBlock;
|
|
fn state() -> &'static State;
|
|
}
|
|
}
|
|
|
|
/// TWIM peripheral instance.
|
|
pub trait Instance: Peripheral<P = Self> + sealed::Instance + 'static {
|
|
/// Interrupt for this peripheral.
|
|
type Interrupt: Interrupt;
|
|
}
|
|
|
|
macro_rules! impl_twim {
|
|
($type:ident, $pac_type:ident, $irq:ident) => {
|
|
impl crate::twim::sealed::Instance for peripherals::$type {
|
|
fn regs() -> &'static pac::twim0::RegisterBlock {
|
|
unsafe { &*pac::$pac_type::ptr() }
|
|
}
|
|
fn state() -> &'static crate::twim::sealed::State {
|
|
static STATE: crate::twim::sealed::State = crate::twim::sealed::State::new();
|
|
&STATE
|
|
}
|
|
}
|
|
impl crate::twim::Instance for peripherals::$type {
|
|
type Interrupt = crate::interrupt::$irq;
|
|
}
|
|
};
|
|
}
|
|
|
|
// ====================
|
|
|
|
mod eh02 {
|
|
use super::*;
|
|
|
|
impl<'a, T: Instance> embedded_hal_02::blocking::i2c::Write for Twim<'a, T> {
|
|
type Error = Error;
|
|
|
|
fn write<'w>(&mut self, addr: u8, bytes: &'w [u8]) -> Result<(), Error> {
|
|
if slice_in_ram(bytes) {
|
|
self.blocking_write(addr, bytes)
|
|
} else {
|
|
let buf = &mut [0; FORCE_COPY_BUFFER_SIZE][..];
|
|
for chunk in bytes.chunks(FORCE_COPY_BUFFER_SIZE) {
|
|
buf[..chunk.len()].copy_from_slice(chunk);
|
|
self.blocking_write(addr, &buf[..chunk.len()])?;
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a, T: Instance> embedded_hal_02::blocking::i2c::Read for Twim<'a, T> {
|
|
type Error = Error;
|
|
|
|
fn read<'w>(&mut self, addr: u8, bytes: &'w mut [u8]) -> Result<(), Error> {
|
|
self.blocking_read(addr, bytes)
|
|
}
|
|
}
|
|
|
|
impl<'a, T: Instance> embedded_hal_02::blocking::i2c::WriteRead for Twim<'a, T> {
|
|
type Error = Error;
|
|
|
|
fn write_read<'w>(&mut self, addr: u8, bytes: &'w [u8], buffer: &'w mut [u8]) -> Result<(), Error> {
|
|
self.blocking_write_read(addr, bytes, buffer)
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "unstable-traits")]
|
|
mod eh1 {
|
|
use super::*;
|
|
|
|
impl embedded_hal_1::i2c::Error for Error {
|
|
fn kind(&self) -> embedded_hal_1::i2c::ErrorKind {
|
|
match *self {
|
|
Self::TxBufferTooLong => embedded_hal_1::i2c::ErrorKind::Other,
|
|
Self::RxBufferTooLong => embedded_hal_1::i2c::ErrorKind::Other,
|
|
Self::Transmit => embedded_hal_1::i2c::ErrorKind::Other,
|
|
Self::Receive => embedded_hal_1::i2c::ErrorKind::Other,
|
|
Self::BufferNotInRAM => embedded_hal_1::i2c::ErrorKind::Other,
|
|
Self::AddressNack => {
|
|
embedded_hal_1::i2c::ErrorKind::NoAcknowledge(embedded_hal_1::i2c::NoAcknowledgeSource::Address)
|
|
}
|
|
Self::DataNack => {
|
|
embedded_hal_1::i2c::ErrorKind::NoAcknowledge(embedded_hal_1::i2c::NoAcknowledgeSource::Data)
|
|
}
|
|
Self::Overrun => embedded_hal_1::i2c::ErrorKind::Overrun,
|
|
Self::Timeout => embedded_hal_1::i2c::ErrorKind::Other,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance> embedded_hal_1::i2c::ErrorType for Twim<'d, T> {
|
|
type Error = Error;
|
|
}
|
|
|
|
impl<'d, T: Instance> embedded_hal_1::i2c::I2c for Twim<'d, T> {
|
|
fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
|
|
self.blocking_read(address, buffer)
|
|
}
|
|
|
|
fn write(&mut self, address: u8, buffer: &[u8]) -> Result<(), Self::Error> {
|
|
self.blocking_write(address, buffer)
|
|
}
|
|
|
|
fn write_iter<B>(&mut self, _address: u8, _bytes: B) -> Result<(), Self::Error>
|
|
where
|
|
B: IntoIterator<Item = u8>,
|
|
{
|
|
todo!();
|
|
}
|
|
|
|
fn write_iter_read<B>(&mut self, _address: u8, _bytes: B, _buffer: &mut [u8]) -> Result<(), Self::Error>
|
|
where
|
|
B: IntoIterator<Item = u8>,
|
|
{
|
|
todo!();
|
|
}
|
|
|
|
fn write_read(&mut self, address: u8, wr_buffer: &[u8], rd_buffer: &mut [u8]) -> Result<(), Self::Error> {
|
|
self.blocking_write_read(address, wr_buffer, rd_buffer)
|
|
}
|
|
|
|
fn transaction<'a>(
|
|
&mut self,
|
|
_address: u8,
|
|
_operations: &mut [embedded_hal_1::i2c::Operation<'a>],
|
|
) -> Result<(), Self::Error> {
|
|
todo!();
|
|
}
|
|
|
|
fn transaction_iter<'a, O>(&mut self, _address: u8, _operations: O) -> Result<(), Self::Error>
|
|
where
|
|
O: IntoIterator<Item = embedded_hal_1::i2c::Operation<'a>>,
|
|
{
|
|
todo!();
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(all(feature = "unstable-traits", feature = "nightly"))]
|
|
mod eha {
|
|
use super::*;
|
|
impl<'d, T: Instance> embedded_hal_async::i2c::I2c for Twim<'d, T> {
|
|
async fn read<'a>(&'a mut self, address: u8, buffer: &'a mut [u8]) -> Result<(), Error> {
|
|
self.read(address, buffer).await
|
|
}
|
|
|
|
async fn write<'a>(&'a mut self, address: u8, bytes: &'a [u8]) -> Result<(), Error> {
|
|
self.write(address, bytes).await
|
|
}
|
|
|
|
async fn write_read<'a>(
|
|
&'a mut self,
|
|
address: u8,
|
|
wr_buffer: &'a [u8],
|
|
rd_buffer: &'a mut [u8],
|
|
) -> Result<(), Error> {
|
|
self.write_read(address, wr_buffer, rd_buffer).await
|
|
}
|
|
|
|
async fn transaction<'a, 'b>(
|
|
&'a mut self,
|
|
address: u8,
|
|
operations: &'a mut [embedded_hal_async::i2c::Operation<'b>],
|
|
) -> Result<(), Error> {
|
|
let _ = address;
|
|
let _ = operations;
|
|
todo!()
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance> SetConfig for Twim<'d, T> {
|
|
type Config = Config;
|
|
fn set_config(&mut self, config: &Self::Config) {
|
|
let r = T::regs();
|
|
r.frequency
|
|
.write(|w| unsafe { w.frequency().bits(config.frequency as u32) });
|
|
}
|
|
}
|