501 lines
14 KiB
Rust

//! Pulse Density Modulation (PDM) mirophone driver.
#![macro_use]
use core::marker::PhantomData;
use core::sync::atomic::{compiler_fence, Ordering};
use core::task::Poll;
use embassy_hal_internal::drop::OnDrop;
use embassy_hal_internal::{into_ref, PeripheralRef};
use fixed::types::I7F1;
use futures::future::poll_fn;
use crate::chip::EASY_DMA_SIZE;
use crate::gpio::sealed::Pin;
use crate::gpio::{AnyPin, Pin as GpioPin};
use crate::interrupt::typelevel::Interrupt;
use crate::pac::pdm::mode::{EDGE_A, OPERATION_A};
pub use crate::pac::pdm::pdmclkctrl::FREQ_A as Frequency;
#[cfg(any(
feature = "nrf52840",
feature = "nrf52833",
feature = "_nrf5340-app",
feature = "_nrf9160",
))]
pub use crate::pac::pdm::ratio::RATIO_A as Ratio;
use crate::{interrupt, Peripheral};
/// Interrupt handler.
pub struct InterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
unsafe fn on_interrupt() {
let r = T::regs();
if r.events_end.read().bits() != 0 {
r.intenclr.write(|w| w.end().clear());
}
if r.events_started.read().bits() != 0 {
r.intenclr.write(|w| w.started().clear());
}
if r.events_stopped.read().bits() != 0 {
r.intenclr.write(|w| w.stopped().clear());
}
T::state().waker.wake();
}
}
/// PDM microphone interface
pub struct Pdm<'d, T: Instance> {
_peri: PeripheralRef<'d, T>,
}
/// PDM error.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub enum Error {
/// Buffer is too long.
BufferTooLong,
/// Buffer is empty
BufferZeroLength,
/// PDM is not running
NotRunning,
/// PDM is already running
AlreadyRunning,
}
static DUMMY_BUFFER: [i16; 1] = [0; 1];
/// The state of a continuously running sampler. While it reflects
/// the progress of a sampler, it also signals what should be done
/// next. For example, if the sampler has stopped then the Pdm implementation
/// can then tear down its infrastructure.
#[derive(PartialEq)]
pub enum SamplerState {
/// The sampler processed the samples and is ready for more.
Sampled,
/// The sampler is done processing samples.
Stopped,
}
impl<'d, T: Instance> Pdm<'d, T> {
/// Create PDM driver
pub fn new(
pdm: impl Peripheral<P = T> + 'd,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
clk: impl Peripheral<P = impl GpioPin> + 'd,
din: impl Peripheral<P = impl GpioPin> + 'd,
config: Config,
) -> Self {
into_ref!(pdm, clk, din);
Self::new_inner(pdm, clk.map_into(), din.map_into(), config)
}
fn new_inner(
pdm: PeripheralRef<'d, T>,
clk: PeripheralRef<'d, AnyPin>,
din: PeripheralRef<'d, AnyPin>,
config: Config,
) -> Self {
into_ref!(pdm);
let r = T::regs();
// setup gpio pins
din.conf().write(|w| w.input().set_bit());
r.psel.din.write(|w| unsafe { w.bits(din.psel_bits()) });
clk.set_low();
clk.conf().write(|w| w.dir().output());
r.psel.clk.write(|w| unsafe { w.bits(clk.psel_bits()) });
// configure
r.pdmclkctrl.write(|w| w.freq().variant(config.frequency));
#[cfg(any(
feature = "nrf52840",
feature = "nrf52833",
feature = "_nrf5340-app",
feature = "_nrf9160",
))]
r.ratio.write(|w| w.ratio().variant(config.ratio));
r.mode.write(|w| {
w.operation().variant(config.operation_mode.into());
w.edge().variant(config.edge.into());
w
});
Self::_set_gain(r, config.gain_left, config.gain_right);
// Disable all events interrupts
r.intenclr.write(|w| unsafe { w.bits(0x003F_FFFF) });
// IRQ
T::Interrupt::unpend();
unsafe { T::Interrupt::enable() };
r.enable.write(|w| w.enable().set_bit());
Self { _peri: pdm }
}
fn _set_gain(r: &crate::pac::pdm::RegisterBlock, gain_left: I7F1, gain_right: I7F1) {
let gain_left = gain_left
.saturating_add(I7F1::from_bits(40))
.saturating_to_num::<u8>()
.clamp(0, 0x50);
let gain_right = gain_right
.saturating_add(I7F1::from_bits(40))
.saturating_to_num::<u8>()
.clamp(0, 0x50);
r.gainl.write(|w| unsafe { w.gainl().bits(gain_left) });
r.gainr.write(|w| unsafe { w.gainr().bits(gain_right) });
}
/// Adjust the gain of the PDM microphone on the fly
pub fn set_gain(&mut self, gain_left: I7F1, gain_right: I7F1) {
Self::_set_gain(T::regs(), gain_left, gain_right)
}
/// Start sampling microphon data into a dummy buffer
/// Usefull to start the microphon and keep it active between recording samples
pub async fn start(&mut self) {
let r = T::regs();
// start dummy sampling because microphon needs some setup time
r.sample
.ptr
.write(|w| unsafe { w.sampleptr().bits(DUMMY_BUFFER.as_ptr() as u32) });
r.sample
.maxcnt
.write(|w| unsafe { w.buffsize().bits(DUMMY_BUFFER.len() as _) });
r.tasks_start.write(|w| unsafe { w.bits(1) });
}
/// Stop sampling microphon data inta a dummy buffer
pub async fn stop(&mut self) {
let r = T::regs();
r.tasks_stop.write(|w| unsafe { w.bits(1) });
r.events_started.reset();
}
/// Sample data into the given buffer.
pub async fn sample(&mut self, buffer: &mut [i16]) -> Result<(), Error> {
if buffer.len() == 0 {
return Err(Error::BufferZeroLength);
}
if buffer.len() > EASY_DMA_SIZE {
return Err(Error::BufferTooLong);
}
let r = T::regs();
if r.events_started.read().bits() == 0 {
return Err(Error::NotRunning);
}
let drop = OnDrop::new(move || {
r.intenclr.write(|w| w.end().clear());
r.events_stopped.reset();
// reset to dummy buffer
r.sample
.ptr
.write(|w| unsafe { w.sampleptr().bits(DUMMY_BUFFER.as_ptr() as u32) });
r.sample
.maxcnt
.write(|w| unsafe { w.buffsize().bits(DUMMY_BUFFER.len() as _) });
while r.events_stopped.read().bits() == 0 {}
});
// setup user buffer
let ptr = buffer.as_ptr();
let len = buffer.len();
r.sample.ptr.write(|w| unsafe { w.sampleptr().bits(ptr as u32) });
r.sample.maxcnt.write(|w| unsafe { w.buffsize().bits(len as _) });
// wait till the current sample is finished and the user buffer sample is started
Self::wait_for_sample().await;
// reset the buffer back to the dummy buffer
r.sample
.ptr
.write(|w| unsafe { w.sampleptr().bits(DUMMY_BUFFER.as_ptr() as u32) });
r.sample
.maxcnt
.write(|w| unsafe { w.buffsize().bits(DUMMY_BUFFER.len() as _) });
// wait till the user buffer is sampled
Self::wait_for_sample().await;
drop.defuse();
Ok(())
}
async fn wait_for_sample() {
let r = T::regs();
r.events_end.reset();
r.intenset.write(|w| w.end().set());
compiler_fence(Ordering::SeqCst);
poll_fn(|cx| {
T::state().waker.register(cx.waker());
if r.events_end.read().bits() != 0 {
return Poll::Ready(());
}
Poll::Pending
})
.await;
compiler_fence(Ordering::SeqCst);
}
/// Continuous sampling with double buffers.
///
/// A sampler closure is provided that receives the buffer of samples, noting
/// that the size of this buffer can be less than the original buffer's size.
/// A command is return from the closure that indicates whether the sampling
/// should continue or stop.
///
/// NOTE: The time spent within the callback supplied should not exceed the time
/// taken to acquire the samples into a single buffer. You should measure the
/// time taken by the callback and set the sample buffer size accordingly.
/// Exceeding this time can lead to samples becoming dropped.
pub async fn run_task_sampler<S, const N: usize>(
&mut self,
bufs: &mut [[i16; N]; 2],
mut sampler: S,
) -> Result<(), Error>
where
S: FnMut(&[i16; N]) -> SamplerState,
{
let r = T::regs();
if r.events_started.read().bits() != 0 {
return Err(Error::AlreadyRunning);
}
r.sample
.ptr
.write(|w| unsafe { w.sampleptr().bits(bufs[0].as_mut_ptr() as u32) });
r.sample.maxcnt.write(|w| unsafe { w.buffsize().bits(N as _) });
// Reset and enable the events
r.events_end.reset();
r.events_started.reset();
r.events_stopped.reset();
r.intenset.write(|w| {
w.end().set();
w.started().set();
w.stopped().set();
w
});
// Don't reorder the start event before the previous writes. Hopefully self
// wouldn't happen anyway.
compiler_fence(Ordering::SeqCst);
r.tasks_start.write(|w| unsafe { w.bits(1) });
let mut current_buffer = 0;
let mut done = false;
let drop = OnDrop::new(|| {
r.tasks_stop.write(|w| unsafe { w.bits(1) });
// N.B. It would be better if this were async, but Drop only support sync code.
while r.events_stopped.read().bits() != 0 {}
});
// Wait for events and complete when the sampler indicates it has had enough.
poll_fn(|cx| {
let r = T::regs();
T::state().waker.register(cx.waker());
if r.events_end.read().bits() != 0 {
compiler_fence(Ordering::SeqCst);
r.events_end.reset();
r.intenset.write(|w| w.end().set());
if !done {
// Discard the last buffer after the user requested a stop.
if sampler(&bufs[current_buffer]) == SamplerState::Sampled {
let next_buffer = 1 - current_buffer;
current_buffer = next_buffer;
} else {
r.tasks_stop.write(|w| unsafe { w.bits(1) });
done = true;
};
};
}
if r.events_started.read().bits() != 0 {
r.events_started.reset();
r.intenset.write(|w| w.started().set());
let next_buffer = 1 - current_buffer;
r.sample
.ptr
.write(|w| unsafe { w.sampleptr().bits(bufs[next_buffer].as_mut_ptr() as u32) });
}
if r.events_stopped.read().bits() != 0 {
return Poll::Ready(());
}
Poll::Pending
})
.await;
drop.defuse();
Ok(())
}
}
/// PDM microphone driver Config
pub struct Config {
/// Use stero or mono operation
pub operation_mode: OperationMode,
/// On which edge the left channel should be samples
pub edge: Edge,
/// Clock frequency
pub frequency: Frequency,
/// Clock ratio
#[cfg(any(
feature = "nrf52840",
feature = "nrf52833",
feature = "_nrf5340-app",
feature = "_nrf9160",
))]
pub ratio: Ratio,
/// Gain left in dB
pub gain_left: I7F1,
/// Gain right in dB
pub gain_right: I7F1,
}
impl Default for Config {
fn default() -> Self {
Self {
operation_mode: OperationMode::Mono,
edge: Edge::LeftFalling,
frequency: Frequency::DEFAULT,
#[cfg(any(
feature = "nrf52840",
feature = "nrf52833",
feature = "_nrf5340-app",
feature = "_nrf9160",
))]
ratio: Ratio::RATIO80,
gain_left: I7F1::ZERO,
gain_right: I7F1::ZERO,
}
}
}
/// PDM operation mode.
#[derive(PartialEq)]
pub enum OperationMode {
/// Mono (1 channel)
Mono,
/// Stereo (2 channels)
Stereo,
}
impl From<OperationMode> for OPERATION_A {
fn from(mode: OperationMode) -> Self {
match mode {
OperationMode::Mono => OPERATION_A::MONO,
OperationMode::Stereo => OPERATION_A::STEREO,
}
}
}
/// PDM edge polarity
#[derive(PartialEq)]
pub enum Edge {
/// Left edge is rising
LeftRising,
/// Left edge is falling
LeftFalling,
}
impl From<Edge> for EDGE_A {
fn from(edge: Edge) -> Self {
match edge {
Edge::LeftRising => EDGE_A::LEFT_RISING,
Edge::LeftFalling => EDGE_A::LEFT_FALLING,
}
}
}
impl<'d, T: Instance> Drop for Pdm<'d, T> {
fn drop(&mut self) {
let r = T::regs();
r.tasks_stop.write(|w| unsafe { w.bits(1) });
r.enable.write(|w| w.enable().disabled());
r.psel.din.reset();
r.psel.clk.reset();
}
}
pub(crate) mod sealed {
use embassy_sync::waitqueue::AtomicWaker;
/// Peripheral static state
pub struct State {
pub waker: AtomicWaker,
}
impl State {
pub const fn new() -> Self {
Self {
waker: AtomicWaker::new(),
}
}
}
pub trait Instance {
fn regs() -> &'static crate::pac::pdm::RegisterBlock;
fn state() -> &'static State;
}
}
/// PDM peripheral instance.
pub trait Instance: Peripheral<P = Self> + sealed::Instance + 'static + Send {
/// Interrupt for this peripheral.
type Interrupt: interrupt::typelevel::Interrupt;
}
macro_rules! impl_pdm {
($type:ident, $pac_type:ident, $irq:ident) => {
impl crate::pdm::sealed::Instance for peripherals::$type {
fn regs() -> &'static crate::pac::pdm::RegisterBlock {
unsafe { &*pac::$pac_type::ptr() }
}
fn state() -> &'static crate::pdm::sealed::State {
static STATE: crate::pdm::sealed::State = crate::pdm::sealed::State::new();
&STATE
}
}
impl crate::pdm::Instance for peripherals::$type {
type Interrupt = crate::interrupt::typelevel::$irq;
}
};
}